BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 09-23-2017, 05:52 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,809
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Periplasmic Binding Protein Dimer Has a Second AllostericEvent Tied to Ligand Binding

Periplasmic Binding Protein Dimer Has a Second AllostericEvent Tied to Ligand Binding



Biochemistry
DOI: 10.1021/acs.biochem.7b00657



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Unraveling the conformational landscape of ligand binding to Glucose/Galactose-binding protein by paramagnetic NMR and MD simulations.
Unraveling the conformational landscape of ligand binding to Glucose/Galactose-binding protein by paramagnetic NMR and MD simulations. Related Articles Unraveling the conformational landscape of ligand binding to Glucose/Galactose-binding protein by paramagnetic NMR and MD simulations. ACS Chem Biol. 2016 May 24; Authors: Unione L, Ortega G, Mallagaray A, Corzana F, Perez-Castells J, Canales A, Jimenez-Barbero J, Millet O Abstract Protein dynamics related to function can be nowadays structurally well characterized (i. e....
nmrlearner Journal club 0 05-25-2016 02:33 PM
[NMR paper] Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions.
Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-highwire.gif http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates...
nmrlearner Journal club 0 04-02-2016 09:55 PM
Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets
Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets Wan-Na Chen, Christoph Nitsche, Kala Bharath Pilla, Bim Graham, Thomas Huber, Christian D. Klein and Gottfried Otting http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.6b00416/20160324/images/medium/ja-2016-004167_0006.gif Journal of the American Chemical Society DOI: 10.1021/jacs.6b00416 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/yfHNdUxBP5M
nmrlearner Journal club 0 03-25-2016 04:12 PM
[NMR paper] Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets.
Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets. Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets. J Am Chem Soc. 2016 Mar 14; Authors: Chen WN, Nitsche C, Pilla KB, Graham B, Huber T, Klein CD, Otting G Abstract Structure-guided drug design relies on detailed structural knowledge of protein-ligand complexes, but crystallization of co-complexes is not always possible. Here we present a sensitive nuclear...
nmrlearner Journal club 0 03-15-2016 11:57 AM
[NMR paper] Mass spectrometry and NMR analysis of ligand binding by human liver fatty acid binding protein.
Mass spectrometry and NMR analysis of ligand binding by human liver fatty acid binding protein. Related Articles Mass spectrometry and NMR analysis of ligand binding by human liver fatty acid binding protein. J Mass Spectrom. 2013 Aug;48(8):i Authors: Santambrogio C, Favretto F, D'Onofrio M, Assfalg M, Grandori R, Molinari H Abstract Protein-ligand interactions are driven by many factors, including protein conformation and pH of the solution. Electrospray mass spectrometry can reveal the degree of protein folding from the distribution of...
nmrlearner Journal club 0 07-31-2013 12:00 PM
[NMR paper] Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein
Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. Biochemistry. 1997 Feb 25;36(8):2278-90 Authors: Hodsdon ME, Cistola DP The backbone dynamics of the liganded (holo) and unliganded (apo) forms of Escherichia...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein
Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. Biochemistry. 1997 Feb 25;36(8):2278-90 Authors: Hodsdon ME, Cistola DP The backbone dynamics of the liganded (holo) and unliganded (apo) forms of Escherichia...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] An investigation of the ligand-binding site of the glutamine-binding protein of Esche
An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR. Related Articles An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR. Biochemistry. 1994 Jul 26;33(29):8651-61 Authors: Hing AW, Tjandra N, Cottam PF, Schaefer J, Ho C Glutamine-binding protein (GlnBP) is an essential component of the glutamine transport system in Escherichia coli. Rotational-echo double-resonance...
nmrlearner Journal club 0 08-22-2010 03:29 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:51 PM.


Map