Related ArticlesPartial purification and substrate specificity of heparan sulfate alpha-N-acetylglucosaminyltransferase I: synthesis, NMR spectroscopic characterization and in vitro assays of two aryl tetrasaccharides.
Glycobiology. 1997 Jul;7(5):587-95
Authors: Fritz TA, Agrawal PK, Esko JD, Krishna NR
Studies of heparan sulfate biosynthesis on beta-D-xylosides have led to the hypothesis that heparan sulfate alpha-N-acetylglucosaminyltransferase I (alpha-GlcNAc-TI) recognizes structures at the reducing end of the proteoglycan linkage tetrasaccharide. We report here the in vivo and in vitro testing of this hypothesis using four synthetic substrates, benzyl- and 2-naphthalenemethanyl-beta-D-xylosides, and two proteoglycan linkage tetrasaccharides containing benzyl alcohol or naphthalmethanol aglycones, viz., GlcAbeta(1 --> 3)Gal beta(1 --> 3)Gal beta(1 --> 4)Xyl beta-O-Bn (BNT) and GlcAbeta(1 --> 3)Gal beta(1 --> 3)Gal beta(1 --> 4)Xyl beta-O-NM (NMT). The aryl tetrasaccharides were chemically synthesized and the 1H and 13C resonances were assigned by two-dimensional NMR spectroscopy. The inter-residue spatial constraints, determined by the 2D NOESY data, revealed essentially identical conformations for the interglycosidic linkages and Xyl-O-CH2Ar linkages in both compounds. Interestingly, the aromatic rings in both tetrasaccharides undergo rapid internal rotation across the CH2-Ar bond. These tetrasaccharides were used to assay heparan sulfate alpha-GlcNAc-TI from homogenates of wild-type CHO cells. alpha-GlcNAc-TI was also purified approximately 900-fold from rat liver and assayed with BNT and NMT. At nearly all concentrations tested, alpha-GlcNAc-TI activity from both CHO cell homogenates and rat liver was greater with the NMT. When fed to CHO cells, benzyl-beta-D-xyloside primed heparan sulfate poorly relative to 2-naphthalenemethanyl-beta-D-xyloside. Thus, the in vitro enzyme activity is consistent with the in vivo priming data that suggests that alpha-GlcNAc-TI can directly recognize structure at the reducing end of the linkage tetrasaccharide. These studies provide an in vivo basis for the possible role of core protein sequences in the biosynthesis of specific glycosaminoglycans.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Influence of substrate modification and C-terminal truncation on the active site structure of substrate-bound heme oxygenase from Neisseriae meningitidis; A 1H NMR study.
Biochemistry. 2011 Aug 27;
Authors: Peng D, Satterlee JD, Ma LH, Dallas JL, Smith KM, Zhang X, Sato M, La Mar GN
Abstract
Heme oxygenase, HO, from the pathogenic bacterium N. meningitidis, NmHO, which...
nmrlearner
Journal club
0
08-30-2011 04:52 PM
13C-Labeled Heparan Sulfate Analogue as a Tool To Study Protein/Heparan Sulfate Interactions by NMR Spectroscopy: Application to the CXCL12? Chemokine
13C-Labeled Heparan Sulfate Analogue as a Tool To Study Protein/Heparan Sulfate Interactions by NMR Spectroscopy: Application to the CXCL12? Chemokine
Ce?dric Laguri, Nicolas Sapay, Jean-Pierre Simorre, Bernhard Brutscher, Anne Imberty, Pierre Gans and Hugues Lortat-Jacob
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja201753e/aop/images/medium/ja-2011-01753e_0006.gif
Journal of the American Chemical Society
DOI: 10.1021/ja201753e
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
06-09-2011 01:32 AM
13C-labeled heparan sulfate analogue as a tool to study protein/heparan sulfate interaction by NMR spectroscopy. Application to the CXCL12? chemokine.
13C-labeled heparan sulfate analogue as a tool to study protein/heparan sulfate interaction by NMR spectroscopy. Application to the CXCL12? chemokine.
13C-labeled heparan sulfate analogue as a tool to study protein/heparan sulfate interaction by NMR spectroscopy. Application to the CXCL12? chemokine.
J Am Chem Soc. 2011 Jun 2;
Authors: Laguri C, Sapay N, Simorre JP, Brutscher B, Imberty A, Gans P, Lortat-Jacob H
Heparan sulfate, a polysaccharide of the glycosaminoglycan family characterized by a unique level of complexity, has emerged as a key...
nmrlearner
Journal club
0
06-04-2011 11:26 AM
The NMR Structure of FliK, the Trigger for the Switch of Substrate Specificity in the Flagellar Type III Secretion Apparatus.
The NMR Structure of FliK, the Trigger for the Switch of Substrate Specificity in the Flagellar Type III Secretion Apparatus.
The NMR Structure of FliK, the Trigger for the Switch of Substrate Specificity in the Flagellar Type III Secretion Apparatus.
J Mol Biol. 2011 Apr 12;
Authors: Mizuno S, Amida H, Kobayashi N, Aizawa SI, Tate SI
The flagellar cytoplasmic protein FliK controls hook elongation by two successive events: by determining hook length and by stopping the supply of hook protein. These two distinct roles are assigned to different...
nmrlearner
Journal club
0
04-25-2011 11:53 AM
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
Solution 1H NMR characterization of substrate-free C. diphtheriae heme oxygenase: pertinence for determining magnetic axes in paramagnetic substrate complexes.
J Inorg Biochem. 2010 Oct;104(10):1063-70
Authors: Du Z, Unno M, Matsui T, Ikeda-Saito M, La Mar GN
Proton 2D NMR was used to confirm in solution a highly conserved portion of the molecular structure upon substrate loss for the...
nmrlearner
Journal club
0
02-10-2011 03:51 PM
[NMR paper] Purification, crystallization, NMR spectroscopy and biochemical analyses of alpha-phy
Purification, crystallization, NMR spectroscopy and biochemical analyses of alpha-phycoerythrocyanin peptides.
Related Articles Purification, crystallization, NMR spectroscopy and biochemical analyses of alpha-phycoerythrocyanin peptides.
Eur J Biochem. 2002 Oct;269(20):5046-55
Authors: Wiegand G, Parbel A, Seifert MH, Holak TA, Reuter W
The alpha-phycoerythrocyanin subunits of the different phycoerythrocyanin complexes of the phycobilisomes from the cyanobacterium Mastigocladus laminosus perform a remarkable photochemistry. Similar to...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Partial purification and substrate specificity of heparan sulfate alpha-N-acetylgluco
Partial purification and substrate specificity of heparan sulfate alpha-N-acetylglucosaminyltransferase I: synthesis, NMR spectroscopic characterization and in vitro assays of two aryl tetrasaccharides.
Related Articles Partial purification and substrate specificity of heparan sulfate alpha-N-acetylglucosaminyltransferase I: synthesis, NMR spectroscopic characterization and in vitro assays of two aryl tetrasaccharides.
Glycobiology. 1997 Jul;7(5):587-95
Authors: Fritz TA, Agrawal PK, Esko JD, Krishna NR
Studies of heparan sulfate biosynthesis...