Related ArticlesParser Combinators: a Practical Application for Generating Parsers for NMR Data.
Proc Int Conf Inf Technol New Gener. 2013;
Authors: Fenwick M, Weatherby G, Ellis HJ, Gryk MR
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a technique for acquiring protein data at atomic resolution and determining the three-dimensional structure of large protein molecules. A typical structure determination process results in the deposition of a large data sets to the BMRB (Bio-Magnetic Resonance Data Bank). This data is stored and shared in a file format called NMR-Star. This format is syntactically and semantically complex making it challenging to parse. Nevertheless, parsing these files is crucial to applying the vast amounts of biological information stored in NMR-Star files, allowing researchers to harness the results of previous studies to direct and validate future work. One powerful approach for parsing files is to apply a Backus-Naur Form (BNF) grammar, which is a high-level model of a file format. Translation of the grammatical model to an executable parser may be automatically accomplished. This paper will show how we applied a model BNF grammar of the NMR-Star format to create a free, open-source parser, using a method that originated in the functional programming world known as "parser combinators". This paper demonstrates the effectiveness of a principled approach to file specification and parsing. This paper also builds upon our previous work [1], in that 1) it applies concepts from Functional Programming (which is relevant even though the implementation language, Java, is more mainstream than Functional Programming), and 2) all work and accomplishments from this project will be made available under standard open source licenses to provide the community with the opportunity to learn from our techniques and methods.
PMID: 24352525 [PubMed - as supplied by publisher]
EMBO Practical Course: Computational structural biology - from data
EMBO Practical Course: Computational structural biology - from data
Hi all, In April we will once again organise the EMBO practical course on "Computational structural biology - from data to structure to function". The
More...
nmrlearner
Conferences
0
02-21-2012 03:40 AM
Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling
Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling
Abstract The fast Fourier transformation has been the gold standard for transforming data from time to frequency domain in many spectroscopic methods, including NMR. While reliable, it has as a drawback that it requires a grid of uniformly sampled data points. This needs very long measuring times for sampling in multidimensional experiments in all indirect dimensions uniformly and even does not allow reaching optimal evolution times that would...
nmrlearner
Journal club
0
02-16-2012 05:24 AM
CONNJUR spectrum translator: an open source application for reformatting NMR spectral data
CONNJUR spectrum translator: an open source application for reformatting NMR spectral data
Abstract NMR spectroscopists are hindered by the lack of standardization for spectral data among the file formats for various NMR data processing tools. This lack of standardization is cumbersome as researchers must perform their own file conversion in order to switch between processing tools and also restricts the combination of tools employed if no conversion option is available. The CONNJUR Spectrum Translator introduces a new, extensible architecture for spectrum translation and introduces two...
nmrlearner
Journal club
0
03-18-2011 06:51 PM
[NMR paper] Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
Related Articles Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
Proteins. 2005 Aug 15;60(3):367-81
Authors: van Dijk AD, Fushman D, Bonvin AM
When classical, Nuclear Overhauser Effect (NOE)-based approaches fail, it is possible, given high-resolution...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] 3D NMR experiments for measuring 15N relaxation data of large proteins: application t
3D NMR experiments for measuring 15N relaxation data of large proteins: application to the 44 kDa ectodomain of SIV gp41.
Related Articles 3D NMR experiments for measuring 15N relaxation data of large proteins: application to the 44 kDa ectodomain of SIV gp41.
J Magn Reson. 1998 Dec;135(2):368-72
Authors: Caffrey M, Kaufman J, Stahl SJ, Wingfield PT, Gronenborn AM, Clore GM
A suite of 3D NMR experiments for measuring 15N-¿1H¿ NOE, 15N T1, and 15N T1rho values in large proteins, uniformly labeled with 15N and 13C, is presented. These...
nmrlearner
Journal club
0
11-17-2010 11:15 PM
[NMR paper] Simulation of NMR data from oriented membrane proteins: practical information for exp
Simulation of NMR data from oriented membrane proteins: practical information for experimental design.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Simulation of NMR data from oriented membrane proteins: practical information for experimental design.
Biophys J. 1993 Oct;65(4):1460-9
Authors: Sanders CR, Schwonek JP
Several hundred solid state NMR...
nmrlearner
Journal club
0
08-22-2010 03:01 AM
[NMR analysis blog] Basics on Arrayed-NMR Data Analysis (Part II): Practical hints
Basics on Arrayed-NMR Data Analysis (Part II): Practical hints
Further to my previous post, I will cover today some more basic tools available in Mnova for the analysis of NMR arrayed experiments. In particular, I will touch on the following points:
How to use different display modes for 1D arrayed spectra
How to navigate throughout the different subspectra in the arrayed item
How to process individual spectra separately