BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-17-2013, 08:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Parkin prevents cortical atrophy and A?-induced alterations of brain metabolism: 像C NMR and magnetic resonance imaging studies in AD models.

Parkin prevents cortical atrophy and A?-induced alterations of brain metabolism: 像C NMR and magnetic resonance imaging studies in AD models.

Related Articles Parkin prevents cortical atrophy and A?-induced alterations of brain metabolism: 像C NMR and magnetic resonance imaging studies in AD models.

Neuroscience. 2012 Dec 6;225:22-34

Authors: Algarzae N, Hebron M, Miessau M, Moussa CE

Abstract
Alzheimer's disease (AD) is a neurodegenerative aging disorder characterized by extracellular A? plaques and intraneuronal neurofibrillary tangles. We conducted longitudinal studies to examine the effects of A? on brain amino acid metabolism in lentiviral A?(1-42) gene transfer animals and transgenic AD mice. We also performed lentiviral parkin gene delivery to determine the effects of A? clearance in AD models. A?(1-42) activated mTOR signaling, and increased 4E-BP phosphorylation. A?(1-42) increased the synthesis of glutamate and aspartate, but not glutamine, leucine and isoleucine, but an increase in leucine and isoleucine levels was concurrent with diminution of neurotransmitters. Additionally, A?(1-42) attenuated mitochondrial tricarboxylic acid (TCA) cycle activity and decreased synthesis of its by-products. Glutamate levels increased prior to lactate accumulation, suggesting oxidative stress. Importantly, parkin reversed the effects of A?(1-42) on amino acid levels, prevented TCA cycle impairment and protected against glutamate toxicity. Cortical atrophy was observed in aged 3xTg-AD mice, while parkin expression was associated with reduced atrophy. Similarly, A?(1-42) resulted in significant cell loss, pronounced astrogliosis and cortical atrophy and parkin reduced astrogliosis and reversed A?(1-42) effects on cell loss and cortical atrophy. Taken together these data suggest that parkin prevents amyloid-induced alteration of brain metabolism and may be used as a therapeutic target to limit neuronal loss in AD.


PMID: 22960314 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers.
Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Jan 17; Authors: Xue S, Qiao J, Pu F, Cameron M, Yang JJ Abstract Magnetic...
nmrlearner Journal club 0 02-03-2013 10:19 AM
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field November 2011 Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 4</br> </br> Highlights
nmrlearner Journal club 0 12-15-2012 09:51 AM
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field November 2011 Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 4</br> </br> Highlights
nmrlearner Journal club 0 12-01-2012 06:10 PM
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 4</br> Xiao-Hong Zhu, Wei Chen</br> </br> </br></br>
nmrlearner Journal club 0 03-09-2012 09:16 AM
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field
In vivo oxygen-17 NMR for imaging brain oxygen metabolism at high field Publication year: 2011 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 23 April 2011</br> Xiao-Hong, Zhu , Wei, Chen</br> *Highlights:*? This article reviews the developments of in vivo 17O NMR imaging in brain research. ? In vivo 17O NMR imaging has improved significantly at high/ultrahigh field. ? In vivo 17O NMR can noninvasively image brain oxygen metabolism and perfusion. ? In vivo 17O NMR is useful for mapping the functional change in oxygen...
nmrlearner Journal club 0 04-24-2011 03:42 PM
[NMR tweet] Imaging of Prostate and Breast Cancer Bone Metastases Using Magnetic Resonance Imaging and Nuclear Medicine T... http://1.usa.gov/fZBOle
Imaging of Prostate and Breast Cancer Bone Metastases Using Magnetic Resonance Imaging and Nuclear Medicine T... http://1.usa.gov/fZBOle Published by BreastCaStudy (Breast Cancer Study) on 2011-04-21T13:43:49Z Source: Twitter
nmrlearner Twitter NMR 0 04-21-2011 01:50 PM
Characterization of (1)H NMR signal in human cortical bone for magnetic resonance ima
Characterization of (1)H NMR signal in human cortical bone for magnetic resonance imaging. Characterization of (1)H NMR signal in human cortical bone for magnetic resonance imaging. Magn Reson Med. 2010 Sep;64(3):680-7 Authors: Horch RA, Nyman JS, Gochberg DF, Dortch RD, Does MD Recent advancements in MRI have enabled clinical imaging of human cortical bone, providing a potentially powerful new means for assessing bone health with molecular-scale sensitivities unavailable to conventional X-ray-based diagnostics. In human cortical bone, MRI is...
nmrlearner Journal club 0 09-02-2010 03:58 PM
[NMR paper] 31P NMR studies of phosphate metabolism in the ovulatory process induced by gonadotro
31P NMR studies of phosphate metabolism in the ovulatory process induced by gonadotropins in perfused rabbit ovary. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles 31P NMR studies of phosphate metabolism in the ovulatory process induced by gonadotropins in perfused rabbit ovary. NMR Biomed. 1999 Jun;12(4):249-55 Authors: Tanaka K, Mizukami A, Kojima N, Ishikawa M The concentrations of phosphate metabolites were measured in perfused...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:52 PM.


Map