Related ArticlesPARAssign-paramagnetic NMR assignments of protein nuclei on the basis of pseudocontact shifts.
J Biomol NMR. 2013 Mar 23;
Authors: Skinner SP, Moshev M, Hass MA, Ubbink M
Abstract
The use of paramagnetic NMR data for the refinement of structures of proteins and protein complexes is widespread. However, the power of paramagnetism for protein assignment has not yet been fully exploited. PARAssign is software that uses pseudocontact shift data derived from several paramagnetic centers attached to the protein to obtain amide and methyl assignments. The ability of PARAssign to perform assignment when the positions of the paramagnetic centers are known and unknown is demonstrated. PARAssign has been tested using synthetic data for methyl assignment of a 47*kDa protein, and using both synthetic and experimental data for amide assignment of a 14*kDa protein. The complex fitting space involved in such an assignment procedure necessitates that good starting conditions are found, both regarding placement and strength of paramagnetic centers. These starting conditions are obtained through automated tensor placement and user-defined tensor parameters. The results presented herein demonstrate that PARAssign is able to successfully perform resonance assignment in large systems with a high degree of reliability. This software provides a method for obtaining the assignments of large systems, which may previously have been unassignable, by using 2D NMR spectral data and a known protein structure.
PMID: 23526169 [PubMed - as supplied by publisher]
Deuterium isotope shifts for backbone 1H, 15N and 13C nuclei in intrinsically disordered protein α-synuclein
Deuterium isotope shifts for backbone 1H, 15N and 13C nuclei in intrinsically disordered protein α-synuclein
Abstract Intrinsically disordered proteins (IDPs) are abundant in nature and characterization of their potential structural propensities remains a widely pursued but challenging task. Analysis of NMR secondary chemical shifts plays an important role in such studies, but the output of such analyses depends on the accuracy of reference random coil chemical shifts. Although uniform perdeuteration of IDPs can dramatically increase spectral resolution, a feature particularly...
nmrlearner
Journal club
0
09-10-2012 01:48 AM
A DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra.
A DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra.
A DOTA-amide lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra.
Bioconjug Chem. 2011 Aug 31;
Authors: Graham B, Loh CT, Swarbrick JD, Ung P, Shin J, Yagi H, Jia X, Chhabra S, Barlow N, Pintacuda G, Huber T, Otting G
Abstract
Structural studies of proteins and protein-ligand complexes by nuclear magnetic resonance (NMR) spectroscopy can be greatly enhanced by site-specific attachment of lanthanide ions to...
nmrlearner
Journal club
0
09-01-2011 05:20 PM
Proteinâ??protein HADDocking using exclusively pseudocontact shifts
Proteinâ??protein HADDocking using exclusively pseudocontact shifts
<div class="Abstract" lang="en">Abstract <div class="normal">In order to enhance the structure determination process of macromolecular assemblies by NMR, we have implemented long-range pseudocontact shift (PCS) restraints into the data-driven protein docking package HADDOCK. We demonstrate the efficiency of the method on a synthetic, yet realistic case based on the lanthanide-labeled N-terminal ε domain of the E. coli DNA polymerase III (ε186) in complex with the HOT domain. Docking from the bound form of the two...
nmrlearner
Journal club
0
06-06-2011 12:53 AM
Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid.
Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid.
Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid.
Angew Chem Int Ed Engl. 2011 Jan 17;50(3):692-4
Authors: Nguyen TH, Ozawa K, Stanton-Cook M, Barrow R, Huber T, Otting G
nmrlearner
Journal club
0
01-13-2011 12:00 PM
Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded
Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid.
Related Articles Generation of Pseudocontact Shifts in Protein NMR Spectra with a Genetically Encoded Cobalt(II)-Binding Amino Acid.
Angew Chem Int Ed Engl. 2010 Nov 25;
Authors: Nguyen TH, Ozawa K, Stanton-Cook M, Barrow R, Huber T, Otting G
nmrlearner
Journal club
0
11-27-2010 02:45 PM
[NMR paper] Improving the accuracy of NMR structures of large proteins using pseudocontact shifts
Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints.
Related Articles Improving the accuracy of NMR structures of large proteins using pseudocontact shifts as long-range restraints.
J Biomol NMR. 2004 Mar;28(3):205-12
Authors: Gaponenko V, Sarma SP, Altieri AS, Horita DA, Li J, Byrd RA
We demonstrate improved accuracy in protein structure determination for large (>/=30 kDa), deuterated proteins (e.g. STAT4(NT)) via the combination of pseudocontact shifts for amide and methyl protons...
nmrlearner
Journal club
0
11-24-2010 09:25 PM
Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts
Numbat: an interactive software tool for fitting Δχ-tensors to molecular coordinates using pseudocontact shifts
Christophe Schmitz, Mitchell J. Stanton-Cook, Xun-Cheng Su, Gottfried Otting and Thomas Huber
Journal of Biomolecular NMR; 2008; 41(3) pp 179 - 189
Abstract:
Pseudocontact shift (PCS) effects induced by a paramagnetic lanthanide bound to a protein have become increasingly popular in NMR spectroscopy as they yield a complementary set of orientational and long-range structural restraints. PCS are a manifestation of the χ-tensor anisotropy, the Δχ-tensor, which in turn can be...
daniel
Journal club
0
08-03-2008 03:38 AM
Structure Determination of Protein-Ligand Complexes by Transferred Paramagnetic Shifts
Structure Determination of Protein-Ligand Complexes by Transferred Paramagnetic Shifts
Michael John, Guido Pintacuda, Ah Young Park, Nicholas E. Dixon, and Gottfried Otting
J. Am. Chem. Soc.; 2006; 128(39) pp 12910 - 12916; (Article)
Abstract:
Rational drug design depends on the knowledge of the three-dimensional (3D) structure of complexes between proteins and lead compounds of low molecular weight. A novel nuclear magnetic resonance (NMR) spectroscopy strategy based on the paramagnetic effects from lanthanide ions allows the rapid determination of the 3D structure of a small...