Related ArticlesParamagnetic 1H NMR spectroscopy of the reduced, unbound photosystem I subunit PsaC: sequence-specific assignment of contact-shifted resonances and identification of mixed- and equal-valence Fe-Fe pairs in [4Fe-4S] centers FA- and FB-.
J Biol Inorg Chem. 2000 Jun;5(3):381-92
Authors: Antonkine ML, Bentrop D, Bertini I, Luchinat C, Shen G, Bryant DA, Stehlik D, Golbeck JH
The PsaC subunit of Photosystem I (PS I) is a 9.3-kDa protein that binds two important cofactors in photosynthetic electron transfer: the [4Fe-4S] clusters FA and FB. The g-tensor orientation of FA- and FB- is believed to be correlated to the preferential localization of the mixed-valence and equal-valence (ferrous) iron pairs in each [4Fe-4S]+ cluster. The preferential position of the mixed-valence and equal-valence pairs, in turn. can be inferred from the study of the temperature dependence of contact-shifted resonances by 1H NMR spectroscopy. For this, a sequence-specific assignment of these signals is required. The 1H NMR spectrum of reduced, unbound PsaC from Synechococcus sp. PCC 7002 at 280.4 K in 99% D2O solution shows 18 hyperfine-shifted resonances. The non-solvent-exchangeable, hyperfine-shifted resonances of reduced PsaC are clearly identified as belonging to the cysteines coordinating the clusters FA- and FB- by their downfield chemical shifts, by their temperature dependencies, and by their short T1 relaxation times. The usual fast method of assigning the 1H NMR spectra of reduced [4Fe-4S] proteins through magnetization transfer from the oxidized to the reduced state was not feasible in the case of reduced PsaC. Therefore, a de novo self-consistent sequence-specific assignment of the hyperfine-shifted resonances was obtained based on dipolar connectivities from 1D NOE difference spectra and on longitudinal relaxation times using the X-ray structure of Clostridium acidi urici 2[4Fe-4S] cluster ferredoxin at 0.94 A resolution as a model. The results clearly show the same sequence-specific distribution of Curie and anti-Curie cysteines for unbound, reduced PsaC as established for other [4Fe-4S]-containing proteins; therefore, the mixed-valence and equal-valence (ferrous) Fe-Fe pairs in FA- and FB- have the same preferential positions relative to the protein. The analysis reveals that the magnetic properties of the two [4Fe-4S] clusters are essentially indistinguishable in unbound PsaC, in contrast to the PsaC that is bound as a component of the PS I complex.
An iminodiacetic acid based lanthanide binding tag for paramagnetic exchange NMR spectroscopy.
An iminodiacetic acid based lanthanide binding tag for paramagnetic exchange NMR spectroscopy.
An iminodiacetic acid based lanthanide binding tag for paramagnetic exchange NMR spectroscopy.
Angew Chem Int Ed Engl. 2011 May 2;50(19):4403-6
Authors: Swarbrick JD, Ung P, Chhabra S, Graham B
PMID: 21480444
nmrlearner
Journal club
0
08-19-2011 02:56 PM
Solid-state (55)Mn NMR spectroscopy of bis(?-oxo)dimanganese(IV) [Mn(2)O(2)(salpn)(2)], a model for the oxygen evolving complex in photosystem II.
Solid-state (55)Mn NMR spectroscopy of bis(?-oxo)dimanganese(IV) , a model for the oxygen evolving complex in photosystem II.
Solid-state (55)Mn NMR spectroscopy of bis(?-oxo)dimanganese(IV) , a model for the oxygen evolving complex in photosystem II.
J Am Chem Soc. 2010 Dec 1;132(47):16727-9
Authors: Ellis PD, Sears JA, Yang P, Dupuis M, Boron TT, Pecoraro VL, Stich TA, Britt RD, Lipton AS
We have examined the antiferromagneticly coupled bis(?-oxo)dimanganese(IV) complex (1) with (55)Mn solid-state NMR at cryogenic temperatures and...
nmrlearner
Journal club
0
03-13-2011 04:01 AM
[NMR paper] Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I fro
Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I from Synechocystis sp. PCC 6803.
Related Articles Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I from Synechocystis sp. PCC 6803.
Biochemistry. 2002 Nov 26;41(47):13902-14
Authors: Barth P, Savarin P, Gilquin B, Lagoutte B, Ochsenbein F
PsaE is a small peripheral subunit of photosystem I (PSI) that is very accessible to the surrounding medium. It plays an essential role in optimizing the interactions with the soluble electron...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignm
Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment.
Related Articles Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment.
Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8009-14
Authors: Szyperski T, Yeh DC, Sukumaran DK, Moseley HN, Montelione GT
A suite of reduced-dimensionality (13)C,(15)N,(1)H-triple-resonance NMR experiments is presented for rapid and complete protein resonance assignment. Even when using short measurement times, these experiments allow one to retain...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] PASE (PAramagnetic signals enhancement): a new method for NMR study of paramagnetic p
PASE (PAramagnetic signals enhancement): a new method for NMR study of paramagnetic proteins.
Related Articles PASE (PAramagnetic signals enhancement): a new method for NMR study of paramagnetic proteins.
J Magn Reson. 1998 Sep;134(1):154-7
Authors: Bondon A, Mouro C
A new method for NMR spectra acquisition of paramagnetic proteins is described, based on the simple use of homonuclear broadband decoupling of the diamagnetic region. Several advantages are associated with this method which was applied to one-dimensional spectra, to 1D...
nmrlearner
Journal club
0
11-17-2010 11:15 PM
[NMR paper] Paramagnetic NMR Spectroscopy of Cobalt(II) and Copper(II) Derivatives of Pseudomonas
Paramagnetic NMR Spectroscopy of Cobalt(II) and Copper(II) Derivatives of Pseudomonas aeruginosa His46Asp Azurin.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Paramagnetic NMR Spectroscopy of Cobalt(II) and Copper(II) Derivatives of Pseudomonas aeruginosa His46Asp Azurin.
Inorg Chem. 1997 Sep 24;36(20):4567-4570
Authors: Vila AJ, Ramirez BE, Di Bilio AJ, Mizoguchi TJ, Richards JH, Gray HB
NMR spectra of paramagnetic Co(II) and Cu(II) derivatives of Pseudomonas aeruginosa His46Asp...
nmrlearner
Journal club
0
08-22-2010 05:08 PM
[NMR paper] 1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium S
1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium Synechococcus sp. strain PCC 7002.
Related Articles 1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium Synechococcus sp. strain PCC 7002.
Biochemistry. 1994 May 24;33(20):6043-51
Authors: Falzone CJ, Kao YH, Zhao J, MacLaughlin KL, Bryant DA, Lecomte JT
PsaE is a highly conserved, water-soluble protein of the photosystem I reaction center complexes of cyanobacteria, algae, and green plants. Along with the PsaC and PsaD proteins,...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] 1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium S
1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium Synechococcus sp. strain PCC 7002.
Related Articles 1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium Synechococcus sp. strain PCC 7002.
Biochemistry. 1994 May 24;33(20):6043-51
Authors: Falzone CJ, Kao YH, Zhao J, MacLaughlin KL, Bryant DA, Lecomte JT
PsaE is a highly conserved, water-soluble protein of the photosystem I reaction center complexes of cyanobacteria, algae, and green plants. Along with the PsaC and PsaD proteins,...