BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-18-2010, 09:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Paramagnetic 1H NMR spectroscopy of the reduced, unbound photosystem I subunit PsaC:

Paramagnetic 1H NMR spectroscopy of the reduced, unbound photosystem I subunit PsaC: sequence-specific assignment of contact-shifted resonances and identification of mixed- and equal-valence Fe-Fe pairs in [4Fe-4S] centers FA- and FB-.

Related Articles Paramagnetic 1H NMR spectroscopy of the reduced, unbound photosystem I subunit PsaC: sequence-specific assignment of contact-shifted resonances and identification of mixed- and equal-valence Fe-Fe pairs in [4Fe-4S] centers FA- and FB-.

J Biol Inorg Chem. 2000 Jun;5(3):381-92

Authors: Antonkine ML, Bentrop D, Bertini I, Luchinat C, Shen G, Bryant DA, Stehlik D, Golbeck JH

The PsaC subunit of Photosystem I (PS I) is a 9.3-kDa protein that binds two important cofactors in photosynthetic electron transfer: the [4Fe-4S] clusters FA and FB. The g-tensor orientation of FA- and FB- is believed to be correlated to the preferential localization of the mixed-valence and equal-valence (ferrous) iron pairs in each [4Fe-4S]+ cluster. The preferential position of the mixed-valence and equal-valence pairs, in turn. can be inferred from the study of the temperature dependence of contact-shifted resonances by 1H NMR spectroscopy. For this, a sequence-specific assignment of these signals is required. The 1H NMR spectrum of reduced, unbound PsaC from Synechococcus sp. PCC 7002 at 280.4 K in 99% D2O solution shows 18 hyperfine-shifted resonances. The non-solvent-exchangeable, hyperfine-shifted resonances of reduced PsaC are clearly identified as belonging to the cysteines coordinating the clusters FA- and FB- by their downfield chemical shifts, by their temperature dependencies, and by their short T1 relaxation times. The usual fast method of assigning the 1H NMR spectra of reduced [4Fe-4S] proteins through magnetization transfer from the oxidized to the reduced state was not feasible in the case of reduced PsaC. Therefore, a de novo self-consistent sequence-specific assignment of the hyperfine-shifted resonances was obtained based on dipolar connectivities from 1D NOE difference spectra and on longitudinal relaxation times using the X-ray structure of Clostridium acidi urici 2[4Fe-4S] cluster ferredoxin at 0.94 A resolution as a model. The results clearly show the same sequence-specific distribution of Curie and anti-Curie cysteines for unbound, reduced PsaC as established for other [4Fe-4S]-containing proteins; therefore, the mixed-valence and equal-valence (ferrous) Fe-Fe pairs in FA- and FB- have the same preferential positions relative to the protein. The analysis reveals that the magnetic properties of the two [4Fe-4S] clusters are essentially indistinguishable in unbound PsaC, in contrast to the PsaC that is bound as a component of the PS I complex.

PMID: 10907749 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
An iminodiacetic acid based lanthanide binding tag for paramagnetic exchange NMR spectroscopy.
An iminodiacetic acid based lanthanide binding tag for paramagnetic exchange NMR spectroscopy. An iminodiacetic acid based lanthanide binding tag for paramagnetic exchange NMR spectroscopy. Angew Chem Int Ed Engl. 2011 May 2;50(19):4403-6 Authors: Swarbrick JD, Ung P, Chhabra S, Graham B PMID: 21480444
nmrlearner Journal club 0 08-19-2011 02:56 PM
Solid-state (55)Mn NMR spectroscopy of bis(?-oxo)dimanganese(IV) [Mn(2)O(2)(salpn)(2)], a model for the oxygen evolving complex in photosystem II.
Solid-state (55)Mn NMR spectroscopy of bis(?-oxo)dimanganese(IV) , a model for the oxygen evolving complex in photosystem II. Solid-state (55)Mn NMR spectroscopy of bis(?-oxo)dimanganese(IV) , a model for the oxygen evolving complex in photosystem II. J Am Chem Soc. 2010 Dec 1;132(47):16727-9 Authors: Ellis PD, Sears JA, Yang P, Dupuis M, Boron TT, Pecoraro VL, Stich TA, Britt RD, Lipton AS We have examined the antiferromagneticly coupled bis(?-oxo)dimanganese(IV) complex (1) with (55)Mn solid-state NMR at cryogenic temperatures and...
nmrlearner Journal club 0 03-13-2011 04:01 AM
[NMR paper] Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I fro
Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I from Synechocystis sp. PCC 6803. Related Articles Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I from Synechocystis sp. PCC 6803. Biochemistry. 2002 Nov 26;41(47):13902-14 Authors: Barth P, Savarin P, Gilquin B, Lagoutte B, Ochsenbein F PsaE is a small peripheral subunit of photosystem I (PSI) that is very accessible to the surrounding medium. It plays an essential role in optimizing the interactions with the soluble electron...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignm
Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Related Articles Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8009-14 Authors: Szyperski T, Yeh DC, Sukumaran DK, Moseley HN, Montelione GT A suite of reduced-dimensionality (13)C,(15)N,(1)H-triple-resonance NMR experiments is presented for rapid and complete protein resonance assignment. Even when using short measurement times, these experiments allow one to retain...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] PASE (PAramagnetic signals enhancement): a new method for NMR study of paramagnetic p
PASE (PAramagnetic signals enhancement): a new method for NMR study of paramagnetic proteins. Related Articles PASE (PAramagnetic signals enhancement): a new method for NMR study of paramagnetic proteins. J Magn Reson. 1998 Sep;134(1):154-7 Authors: Bondon A, Mouro C A new method for NMR spectra acquisition of paramagnetic proteins is described, based on the simple use of homonuclear broadband decoupling of the diamagnetic region. Several advantages are associated with this method which was applied to one-dimensional spectra, to 1D...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Paramagnetic NMR Spectroscopy of Cobalt(II) and Copper(II) Derivatives of Pseudomonas
Paramagnetic NMR Spectroscopy of Cobalt(II) and Copper(II) Derivatives of Pseudomonas aeruginosa His46Asp Azurin. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Paramagnetic NMR Spectroscopy of Cobalt(II) and Copper(II) Derivatives of Pseudomonas aeruginosa His46Asp Azurin. Inorg Chem. 1997 Sep 24;36(20):4567-4570 Authors: Vila AJ, Ramirez BE, Di Bilio AJ, Mizoguchi TJ, Richards JH, Gray HB NMR spectra of paramagnetic Co(II) and Cu(II) derivatives of Pseudomonas aeruginosa His46Asp...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] 1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium S
1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium Synechococcus sp. strain PCC 7002. Related Articles 1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry. 1994 May 24;33(20):6043-51 Authors: Falzone CJ, Kao YH, Zhao J, MacLaughlin KL, Bryant DA, Lecomte JT PsaE is a highly conserved, water-soluble protein of the photosystem I reaction center complexes of cyanobacteria, algae, and green plants. Along with the PsaC and PsaD proteins,...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] 1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium S
1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium Synechococcus sp. strain PCC 7002. Related Articles 1H and 15N NMR assignments of PsaE, a photosystem I subunit from the cyanobacterium Synechococcus sp. strain PCC 7002. Biochemistry. 1994 May 24;33(20):6043-51 Authors: Falzone CJ, Kao YH, Zhao J, MacLaughlin KL, Bryant DA, Lecomte JT PsaE is a highly conserved, water-soluble protein of the photosystem I reaction center complexes of cyanobacteria, algae, and green plants. Along with the PsaC and PsaD proteins,...
nmrlearner Journal club 0 08-22-2010 03:33 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:04 PM.


Map