BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-07-2017, 07:31 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Palladium in the Chemical Synthesis and Modification of Proteins

Palladium in the Chemical Synthesis and Modification of Proteins


The field of site-specific modification of proteins has drawn significant attention in recent years owing to its importance in various research areas such as the development of novel therapeutics and understanding the biochemical and cellular behaviors of proteins. The presence of a large number of reactive functional groups in the protein of interest and in the cellular environment renders modification at a specific site a highly challenging task. With the development of sophisticated chemical methodologies it is now possible to target a specific site of a protein with a desired modification, however, many challenges remain to be solved. In this context, transition metals in particular palladium-mediated C-C bond-forming and C-O bond-cleavage reactions gained great interest owing to the unique catalytic properties of palladium. Palladium chemistry is being explored for protein modifications in vitro, on the cell surface, and within the cell. Very recently, palladium complexes have been applied for the rapid deprotection of several widely utilized cysteine protecting groups as well as in the removal of solubilizing tags to facilitate chemical protein synthesis. This Minireview highlights these advances and how the accumulated knowledge of palladium chemistry for small molecules is being impressively transferred to synthesis and modification of chemical proteins.Making changes: Palladium chemistry is being significantly explored for protein modifications in vitro, on the cell surface, and within the cell. Very recently, palladium complexes have been applied for the rapid deprotection of several widely utilized cysteine protecting groups, as well as in the removal of solubilizing tags to facilitate chemical protein synthesis. This Minireview summarizes such advances.

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Palladium in Chemical Protein Synthesis and Modifications
Palladium in Chemical Protein Synthesis and Modifications The field of site-specific modification of proteins has drawn significant attentions in recent years owing to its high importance in various research areas such as the development of novel therapeutics and understanding the biochemical and cellular behaviors of proteins. The presence of a large number of reactive functional groups in the protein of interest and in the cellular environment renders the particular modification at a specific site a highly challenging task. However, with the development of sophisticated...
nmrlearner Journal club 0 04-07-2017 02:01 AM
[NMR paper] Knight Shift in 13C NMR Resonances Confirms the Coordination of N-Heterocyclic Carbene Ligands to Water-Soluble Palladium Nanoparticles
Knight Shift in 13C NMR Resonances Confirms the Coordination of N-Heterocyclic Carbene Ligands to Water-Soluble Palladium Nanoparticles The coordination of N-heterocyclic carbene (NHC) ligands to the surface of 3.7 nm palladium nanoparticles (PdNPs) can be unambiguously established by observation of Knight shift (KS) in the 13C resonance of the carbenic carbon. In order to validate this coordination, PdNPs with sizes ranging from 1.3 to 4.8 nm were prepared by thermal decomposition or reduction with CO of a dimethyl NHC PdII complex. NMR studies after 13CO adsorption established that the...
nmrlearner Journal club 0 12-10-2016 04:09 PM
[NMR paper] Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies.
Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies. Related Articles Isotope-Labeled Amyloids via Synthesis, Expression, and Chemical Ligation for Use in FTIR, 2D IR, and NMR Studies. Methods Mol Biol. 2016;1345:21-41 Authors: Zhang TO, Grechko M, Moran SD, Zanni MT Abstract This chapter provides protocols for isotope-labeling the human islet amyloid polypeptide (hIAPP or amylin) involved in type II diabetes and ?D-crystallin involved in cataract formation. Because...
nmrlearner Journal club 0 10-12-2015 01:04 AM
[NMR paper] Unraveling the interaction between the LPS O-antigen of Burkholderia anthina and the 5D8 monoclonal antibody by using a multidisciplinary chemical approach, with synthesis, NMR, and molecular modeling methods.
Unraveling the interaction between the LPS O-antigen of Burkholderia anthina and the 5D8 monoclonal antibody by using a multidisciplinary chemical approach, with synthesis, NMR, and molecular modeling methods. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Unraveling the interaction between the LPS O-antigen of Burkholderia anthina and the 5D8 monoclonal antibody by using a multidisciplinary chemical approach, with synthesis, NMR, and molecular modeling methods....
nmrlearner Journal club 0 03-04-2014 06:37 PM
[NMR paper] Synthesis of modified Trichinella spiralis disaccharide epitopes and a comparison of their recognition by chemical mapping and saturation transfer difference NMR.
Synthesis of modified Trichinella spiralis disaccharide epitopes and a comparison of their recognition by chemical mapping and saturation transfer difference NMR. Synthesis of modified Trichinella spiralis disaccharide epitopes and a comparison of their recognition by chemical mapping and saturation transfer difference NMR. Carbohydr Res. 2013 Nov 1;383C:1-13 Authors: Cui L, Ling CC, Sadowska J, Bundle DR Abstract A rat monoclonal antibody 9D4 raised against the cell surface N-glycan of the parasite Trichinella spirallis protects rats...
nmrlearner Journal club 0 11-20-2013 12:42 AM
[NMR paper] Combined use of optical spectroscopy and computational methods to study the binding and the photoinduced conformational modification of proteins when NMR and x-ray structural determinations are not an option.
Combined use of optical spectroscopy and computational methods to study the binding and the photoinduced conformational modification of proteins when NMR and x-ray structural determinations are not an option. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Combined use of optical spectroscopy and computational methods to study the binding and the photoinduced conformational modification of proteins when NMR and x-ray structural determinations are not an option. Adv Protein Chem...
nmrlearner Journal club 0 09-11-2013 09:15 PM
[NMR paper] Cell-free synthesis of 15N-labeled proteins for NMR studies.
Cell-free synthesis of 15N-labeled proteins for NMR studies. Related Articles Cell-free synthesis of 15N-labeled proteins for NMR studies. IUBMB Life. 2005 Sep;57(9):615-22 Authors: Ozawa K, Dixon NE, Otting G Modern cell-free in vitro protein synthesis systems present powerful tools for the synthesis of isotope-labeled proteins in high yields. The production of selectively 15 N-labeled proteins from 15 N-labeled amino acids is particularly economic and yields are often sufficient to analyze the proteins very quickly by two-dimensional NMR...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Proton NMR studies of the structural and dynamical effect of chemical modification of
Proton NMR studies of the structural and dynamical effect of chemical modification of a single aromatic side-chain in a snake cardiotoxin. Relation to the structure of the putative binding site and the cytolytic activity of the toxin. Related Articles Proton NMR studies of the structural and dynamical effect of chemical modification of a single aromatic side-chain in a snake cardiotoxin. Relation to the structure of the putative binding site and the cytolytic activity of the toxin. J Mol Biol. 1994 Nov 4;243(4):719-35 Authors: Roumestand C, Gilquin B,...
nmrlearner Journal club 0 08-22-2010 03:29 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:18 PM.


Map