BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-01-2013, 11:46 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Origin of Abrupt Rise in Deuteron NMR Longitudinal Relaxation Times of Protein Methyl Groups Below 90 K.

Origin of Abrupt Rise in Deuteron NMR Longitudinal Relaxation Times of Protein Methyl Groups Below 90 K.

Origin of Abrupt Rise in Deuteron NMR Longitudinal Relaxation Times of Protein Methyl Groups Below 90 K.

J Phys Chem B. 2013 Apr 29;

Authors: Vugmeyster L, Ostrovsky D, Lipton AS

Abstract
In order to examine the origin of the abrupt change in the temperature dependence of 2H NMR longitudinal relaxation times observed previously for methyl groups of L69 in the hydrophobic core of villin headpiece protein at around 90 K (Vugmeyster et al. J. Am. Chem. Soc. 2010, 132, 4038-4039), we extended the measurements to several other methyl groups in the hydrophobic core. We show that for all methyl groups, relaxation times experience a dramatic jump several orders of magnitude around this temperature. Theoretical modeling supports the conclusion that the origin of the apparent transition in the relaxation times is due to the existence of the distribution of conformers distinguished by their activation energy for methyl three-site hops. It is also crucial to take into account the differential contribution of individual conformers into overall signal intensity. When a particular conformer approaches the regime at which its three-site hop rate constant is on the order of the quadrupolar coupling interaction constant, the intensity of the signal due to this conformer experiences a sharp drop, thus changing the balance of the contributions of different conformers into the overall signal. As a result, the observed apparent transition in the relaxation rates can be explained without the assumption of an underlying transition in the rate constants. This work in combination with earlier results also shows that the model based on the distribution of conformers explains the relaxation behavior in the entire temperature range between 300-70 K.


PMID: 23627365 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Glassy dynamics of protein methyl groups revealed by deuteron NMR.
Glassy dynamics of protein methyl groups revealed by deuteron NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Glassy dynamics of protein methyl groups revealed by deuteron NMR. J Phys Chem B. 2013 Jan 31;117(4):1051-61 Authors: Vugmeyster L, Ostrovsky D, Penland K, Hoatson GL, Vold RL Abstract We investigated site-specific dynamics of key methyl groups in the hydrophobic core of chicken villin headpiece subdomain (HP36) over the temperature range between 298 and 140 K...
nmrlearner Journal club 0 02-03-2013 10:22 AM
13C relaxation experiments for aromatic side chains employing longitudinal- and transverse-relaxation optimized NMR spectroscopy
13C relaxation experiments for aromatic side chains employing longitudinal- and transverse-relaxation optimized NMR spectroscopy Abstract Aromatic side chains are prevalent in protein binding sites, perform functional roles in enzymatic catalysis, and form an integral part of the hydrophobic core of proteins. Thus, it is of great interest to probe the conformational dynamics of aromatic side chains and its response to biologically relevant events. Indeed, measurements of 13C relaxation rates in aromatic moieties have a long history in biomolecular NMR, primarily in the context of...
nmrlearner Journal club 0 07-05-2012 04:13 AM
Selective editing of Val and Leu methyl groups in high molecular weight protein NMR
Selective editing of Val and Leu methyl groups in high molecular weight protein NMR Abstract The development of methyl-TROSY approaches and specific 13Câ??1H labeling of Ile, Leu and Val methyl groups in highly deuterated proteins has made it possible to study high molecular weight proteins, either alone or in complexes, using solution nuclear magnetic resonance (NMR) spectroscopy. Here we present 2-dimensional (2D) and 3-dimensional (3D) NMR experiments designed to achieve complete separation of the methyl resonances of Val and Leu, labeled using the same precursor, α-ketoisovalerate...
nmrlearner Journal club 0 05-01-2012 07:06 AM
Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy
Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy Abstract We developed a new method to elucidate the binding kinetics kon and koff, and the dissociation constant KD (=koff/kon), of protein-protein interactions without observable bound resonances of the protein of interest due to high molecular weight in a complex with a large target protein. In our method, kon and koff rates are calculated from the analysis of longitudinal relaxation rates of free resonances measured for multiple samples containing different...
nmrlearner Journal club 0 06-06-2011 12:53 AM
Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy.
Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy. Elucidating slow binding kinetics of a protein without observable bound resonances by longitudinal relaxation NMR spectroscopy. J Biomol NMR. 2011 May 28; Authors: Sugase K We developed a new method to elucidate the binding kinetics k(on) and k(off), and the dissociation constant K(D) (=k(off)/k(on)), of protein-protein interactions without observable bound resonances of the protein of interest due to high molecular...
nmrlearner Journal club 0 06-01-2011 02:30 PM
[NMR paper] NMR spectroscopic detection of protein protons and longitudinal relaxation rates betw
NMR spectroscopic detection of protein protons and longitudinal relaxation rates between 0.01 and 50 MHz. Related Articles NMR spectroscopic detection of protein protons and longitudinal relaxation rates between 0.01 and 50 MHz. Angew Chem Int Ed Engl. 2005 Apr 8;44(15):2223-5 Authors: Bertini I, Gupta YK, Luchinat C, Parigi G, Schlörb C, Schwalbe H
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] 14N NMR relaxation times of several protein amino acids in aqueous solution--comparis
14N NMR relaxation times of several protein amino acids in aqueous solution--comparison with 17O NMR data and estimation of the relative hydration numbers in the cationic and zwitterionic forms. Related Articles 14N NMR relaxation times of several protein amino acids in aqueous solution--comparison with 17O NMR data and estimation of the relative hydration numbers in the cationic and zwitterionic forms. J Magn Reson. 2003 Oct;164(2):294-303 Authors: Troganis AN, Tsanaktsidis C, Gerothanassis IP The 14N nuclear magnetic resonance (NMR)...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in
Cross-correlated relaxation enhanced 1H13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. Related Articles Cross-correlated relaxation enhanced 1H13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc. 2003 Aug 27;125(34):10420-8 Authors: Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE A comparison of HSQC and HMQC pulse schemes for recording (1)H(13)C correlation maps of protonated methyl groups in highly deuterated proteins is presented....
nmrlearner Journal club 0 11-24-2010 09:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:13 PM.


Map