Publication year: 2012 Source: Journal of Magnetic Resonance, Available online 8 January 2012
Christoph*Abé, Daniel*Klose, Franziska*Dietrich, Wolfgang H.*Ziegler, Yevhen*Polyhach, ...
Double electron electron resonance (DEER) spectroscopy has been established as a valuable method to determine distances between spin labels bound to protein molecules. Caused by selective excitation of molecular orientations DEER primary data also depend on the mutual orientation of the spin labels. For a doubly spin labeled variant of the cytoskeletal protein vinculin tail strong orientation selection can be observed already at X-band frequencies, which allows us to reduce the problem to the relative orientation of two molecular axes and the spin–spin axis parameterized by three angles. A full grid search of parameter space reveals that the DEER experiment introduces parameter-space symmetry higher than the symmetry of the spin Hamiltonian. Thus, the number of equivalent parameter sets is twice as large as expected and the relative orientation of the two spin labels is ambiguous. Except for this inherent ambiguity the most probable relative orientation of the two spin labels can be determined with good confidence and moderate uncertainty by global fitting of a set of five DEER experiments at different offsets between pump and observer frequency. The experiment provides restraints on the angles between the z axis of the nitroxide molecular frame and the spin-spin vector and on the dihedral between the two z axes. When using the same type of label at both sites, assignment of the angle restraints is ambiguous and the sign of the dihedral restraint is also ambiguous. Graphical abstract
Highlights
? Orientation selective DEER was applied to a spin labeled variant of vinculin. ? Strong orientation selection could be observed at X-band frequencies. ? Parameter space could be reduced to the interspin distance and three angles. ? A grid search of the parameter space reveals symmetry, distance and angles.
Effect of Freezing Conditions on Distances and Their Distributions Derived from Double Electron Electron Resonance (DEER): A Study of Doubly-Spin-Labeled T4 Lysozyme
Effect of Freezing Conditions on Distances and Their Distributions Derived from Double Electron Electron Resonance (DEER): A Study of Doubly-Spin-Labeled T4 Lysozyme
Publication year: 2012
Source: Journal of Magnetic Resonance, Available online 24 January 2012</br>
Elka R.*Georgieva, Aritro S.*Roy, Vladimir M.*Grigoryants, Petr P.*Borbat, Keith A.*Earle, ...</br>
Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant could possibly affect the...
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy
Abstract Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of globular, modular and intrinsically disordered proteins, as well as proteinâ??protein and protein-DNA complexes. Here we characterized the conformation of a spin-label attached to the homodimeric protein CylR2 using a combination of X-ray crystallography, electron...
nmrlearner
Journal club
0
01-31-2011 06:03 AM
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
Integrated analysis of the conformation of a protein-linked spin label by crystallography, EPR and NMR spectroscopy.
J Biomol NMR. 2011 Jan 28;
Authors: Gruene T, Cho MK, Karyagina I, Kim HY, Grosse C, Giller K, Zweckstetter M, Becker S
Long-range structural information derived from paramagnetic relaxation enhancement observed in the presence of a paramagnetic nitroxide radical is highly useful for structural characterization of...
nmrlearner
Journal club
0
01-29-2011 12:35 PM
[NMR paper] Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble
Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations.
Related Articles Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations.
J Am Chem Soc. 2005 Jan 19;127(2):476-7
Authors: Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM
The intrinsically disordered protein alpha-synuclein plays a key role in the pathogenesis of Parkinson's disease (PD). We show here that the native state of alpha-synuclein...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] Determination of local protein structure by spin label difference 2D NMR: the region
Determination of local protein structure by spin label difference 2D NMR: the region neighboring Asp61 of subunit c of the F1F0 ATP synthase.
Related Articles Determination of local protein structure by spin label difference 2D NMR: the region neighboring Asp61 of subunit c of the F1F0 ATP synthase.
Biochemistry. 1995 Feb 7;34(5):1635-45
Authors: Girvin ME, Fillingame RH
Purified subunit c from the H(+)-transporting F1F0 ATP synthase of Escherichia coli folds as an antiparallel pair of extended helices in a solution of...