Related ArticlesOptimization of three-dimensional TROSY-type HCCH NMR correlation of aromatic (1)H-(13)C groups in proteins.
J Magn Reson. 1999 Aug;139(2):447-50
Authors: Meissner A, Sorensen OW
Improved methods for three-dimensional TROSY-Type HCCH correlation involving protons of negligible CSA are presented. The TROSY approach differs from the conventional approach of heteronuclear decoupling in evolution and detection periods by not mixing fast and slowly relaxing coherences and usually suppressing the former. Pervushin et al. (J. Am. Chem. Soc. 120, 6394-6400 (1998)) have proposed a 3D TROSY-type HCCH experiment where the TROSY approach is applied only in one of the (13)C dimensions. A new pulse sequence applying the TROSY approach in both indirect dimensions is advantageous when the TROSY effect of the carbons is large or when a relatively high resolution is required. For lower resolutions or moderate TROSY effects we show that it is possible to combine the best of both worlds, namely to suppress heteronuclear couplings without mixing fast and slowly relaxing coherences while at the same time superimpose the two components and thus have both contribute to the detected signal. That is possible using the novel technique of Spin-State-Selective Time-Proportional Phase Incrementation (S(3) TPPI). The new 3D S(3) TPPI TROSY HCCH method is demonstrated on a (13)C,(15)N-labeled protein sample, RAP 18-112 (N-terminal domain of alpha(2)-macroglobulin receptor associated protein), at 750 MHz and average sensitivity enhancements of 10% are obtained for the cross peaks in comparison to methods based on conventional decoupling on one of the carbons or on TROSY on both carbons.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
Optimization of amino acid type-specific (13)C and (15)N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm.
J Biomol NMR. 2010 Dec 18;
Authors: Hefke F, Bagaria A, Reckel S, Ullrich SJ, Dötsch V, Glaubitz C, Güntert P
We present a computational method for finding optimal labeling patterns for the backbone...
nmrlearner
Journal club
0
12-21-2010 01:00 PM
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Optimization of amino acid type-specific 13C and 15N labeling for the backbone assignment of membrane proteins by solution- and solid-state NMR with the UPLABEL algorithm
Abstract We present a computational method for finding optimal labeling patterns for the backbone assignment of membrane proteins and other large proteins that cannot be assigned by conventional strategies. Following the approach of Kainosho and Tsuji (Biochemistry 21:6273â??6279 (1982)), types of amino acids are labeled with 13C or/and 15N such that cross peaks between 13CO(i â?? 1) and 15NH(i) result only for pairs...
nmrlearner
Journal club
0
12-21-2010 02:14 AM
[NMR paper] Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy.
Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy.
Related Articles Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy.
J Am Chem Soc. 2002 Oct 30;124(43):12898-902
Authors: Pervushin K, Vögeli B, Eletsky A
A general method to enhance the sensitivity of the multidimensional NMR experiments performed at high-polarizing magnetic field via the significant reduction of the longitudinal proton relaxation times is described. The method is based on the use of two vast pools of "thermal bath" 1H spins residing on...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Editing and diagonal peak suppression in three-dimensional HCCH protein NMR correlati
Editing and diagonal peak suppression in three-dimensional HCCH protein NMR correlation experiments.
Related Articles Editing and diagonal peak suppression in three-dimensional HCCH protein NMR correlation experiments.
J Biomol NMR. 2001 Jan;19(1):69-73
Authors: Meissner A, Sørensen OW
A novel three-dimensional (3D) HCCH NMR experiment is introduced. It involves 13C-13C COSY or TOCSY coherence transfer plus two independent editing steps according to the number of protons attached to the individual carbons before and after the 13C-13C...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
[NMR paper] Suppression of diagonal peaks in three-dimensional protein NMR TROSY-type HCCH correl
Suppression of diagonal peaks in three-dimensional protein NMR TROSY-type HCCH correlation experiments.
Related Articles Suppression of diagonal peaks in three-dimensional protein NMR TROSY-type HCCH correlation experiments.
J Magn Reson. 2000 May;144(1):171-4
Authors: Meissner A, Sorensen OW
A novel method for suppression of (13)C-(13)C diagonal peaks without sensitivity loss in three-dimensional HCCH TROSY-type NMR correlation experiments involving aromatic side chains in proteins (Pervushin et al., J. Am. Chem. Soc. 120, 6394-6400 (1998))...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
[NMR paper] Suppression of diagonal peaks in TROSY-type 1H NMR NOESY spectra of 15N-labeled prote
Suppression of diagonal peaks in TROSY-type 1H NMR NOESY spectra of 15N-labeled proteins.
Related Articles Suppression of diagonal peaks in TROSY-type 1H NMR NOESY spectra of 15N-labeled proteins.
J Magn Reson. 1999 Oct;140(2):499-503
Authors: Meissner A, Sørensen OW
A novel method for suppression of diagonal peaks in the amide region of NOESY NMR spectra of 15N-labeled proteins is presented. The method is particularly useful for larger proteins at high magnetic fields where interference between dipolar and chemical shift anisotropy relaxation...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] The role of coherence transfer efficiency in design of TROSY-type multidimensional NM
The role of coherence transfer efficiency in design of TROSY-type multidimensional NMR experiments.
Related Articles The role of coherence transfer efficiency in design of TROSY-type multidimensional NMR experiments.
J Magn Reson. 1999 Aug;139(2):439-42
Authors: Meissner A, Sørensen OW
An improved method for TROSY-type (Pervushin et al., Proc. Natl. Acad. Sci. USA 94, 12366-12371 (1997)) heteronuclear two-dimensional correlation involving protons of negligible CSA is presented. Rather than applying a simple INEPT sequence for back-transfer to...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMRwiki tweet] nmrwiki: Why HCCH TOCSY does not work for whole aromatic side chains? #nmrhttp://qa.n
nmrwiki: Why HCCH TOCSY does not work for whole aromatic side chains? #nmrhttp://qa.nmrwiki.org/question/199/
nmrwiki: Why HCCH TOCSY does not work for whole aromatic side chains? #nmrhttp://qa.nmrwiki.org/question/199/
Source: NMRWiki tweets