BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rating: Thread Rating: 1 votes, 5.00 average. Display Modes
  #1  
Old 02-26-2013, 06:35 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Optimization of the design and preparation of nanoscale phospholipid bilayers for its application to solution NMR.

Optimization of the design and preparation of nanoscale phospholipid bilayers for its application to solution NMR.

Optimization of the design and preparation of nanoscale phospholipid bilayers for its application to solution NMR.

Proteins. 2013 Feb 21;

Authors: Puthenveetil R, Vinogradova O

Abstract
Despite arduous efforts and recent technological developments structural investigation of integral membrane proteins remains a challenge. The primary deterrents include difficulties with their expression, low inherent solubility and various problems associated with existing membrane mimicking systems. A relatively new class of membrane mimetics, nanodiscs, has been developed as a promising alternative. Although nanodiscs have been proven successful for several biophysical applications, they yet remain to become the system of preferred choice for structure determination. We have hereby made nanodiscs more suitable for solution NMR applications by reducing the diameter of the self-assembly complex to its potential limit. We achieved a noticeable improvement in the quality of NMR spectra obtained for the transmembrane and cytoplasmic domains of integrin ?(IIb) incorporated into these smaller discs rendering them susceptible for a thorough structural investigation. We also present an on-column method for a rapid, efficient, single step preparation of protein incorporated nanodiscs at high concentrations. These discs have been fully characterized by transmission electron microscopy, dynamic light scattering and differential scanning calorimetry. Proteins 2013. © 2013 Wiley Periodicals, Inc.


PMID: 23436707 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Permeation through Phospholipid Bilayers, Skin-Cell Penetration, Plasma Stability, and CD Spectra of ?- and ?-Oligoproline Derivatives.
Permeation through Phospholipid Bilayers, Skin-Cell Penetration, Plasma Stability, and CD Spectra of ?- and ?-Oligoproline Derivatives. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Permeation through Phospholipid Bilayers, Skin-Cell Penetration, Plasma Stability, and CD Spectra of ?- and ?-Oligoproline Derivatives. Chem Biodivers. 2013 Jan;10(1):1-38 Authors: Kolesinska B, Podwysocka DJ, Rueping MA, Seebach D, Kamena F, Walde P, Sauer M, Windschiegl B,...
nmrlearner Journal club 0 02-03-2013 10:19 AM
Improved 1H amide resonance line narrowing in oriented sample solid-state NMR of membrane proteins in phospholipid bilayers
Improved 1H amide resonance line narrowing in oriented sample solid-state NMR of membrane proteins in phospholipid bilayers July 2012 Publication year: 2012 Source:Journal of Magnetic Resonance, Volume 220</br> </br> We demonstrate 1H amide resonance line widths
nmrlearner Journal club 0 02-03-2013 10:13 AM
Properties of the DREAM scheme and its optimization for application to proteins
Properties of the DREAM scheme and its optimization for application to proteins Abstract The DREAM scheme is an efficient adiabatic homonuclear polarization-transfer method suitable for multi-dimensional experiments in biomolecular solid-state NMR. The bandwidth and dynamics of the polarization transfer in the DREAM experiment depend on a number of experimental and spin-system parameters. In order to obtain optimal results, the dependence of the cross-peak intensity on these parameters needs to be understood and carefully controlled. We introduce a simplified model to...
nmrlearner Journal club 0 05-08-2012 05:37 AM
Improved 1H Amide Resonance Line Narrowing in Oriented Sample Solid-state NMR of Membrane Proteins in Phospholipid Bilayers
Improved 1H Amide Resonance Line Narrowing in Oriented Sample Solid-state NMR of Membrane Proteins in Phospholipid Bilayers Publication year: 2012 Source:Journal of Magnetic Resonance</br> George J. Lu, Sang Ho Park, Stanley J. Opella</br> We demonstrate 1H amide resonance line widths
nmrlearner Journal club 0 04-26-2012 08:10 PM
[NMR paper] Probing the oligomeric state of phospholamban variants in phospholipid bilayers from
Probing the oligomeric state of phospholamban variants in phospholipid bilayers from solid-state NMR measurements of rotational diffusion rates. Related Articles Probing the oligomeric state of phospholamban variants in phospholipid bilayers from solid-state NMR measurements of rotational diffusion rates. Biochemistry. 2005 Mar 15;44(10):4055-66 Authors: Hughes E, Clayton JC, Middleton DA Phospholamban (PLB) is a small transmembrane protein that regulates calcium transport across the sarcoplasmic reticulum (SR) of cardiac cells. PLB...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Investigation of the interaction of myelin basic protein with phospholipid bilayers u
Investigation of the interaction of myelin basic protein with phospholipid bilayers using solid-state NMR spectroscopy. Related Articles Investigation of the interaction of myelin basic protein with phospholipid bilayers using solid-state NMR spectroscopy. Chem Phys Lipids. 2004 Nov;132(1):47-54 Authors: Pointer-Keenan CD, Lee DK, Hallok K, Tan A, Zand R, Ramamoorthy A Interaction of bovine myelin basic protein and its constituent charge isomers (C1-C3) with phospholipid bilayers was studied using solid-state NMR experiments on model...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] The application of x-ray, NMR, and molecular modeling in the design of MMP inhibitors
The application of x-ray, NMR, and molecular modeling in the design of MMP inhibitors. Related Articles The application of x-ray, NMR, and molecular modeling in the design of MMP inhibitors. Curr Top Med Chem. 2004;4(12):1311-27 Authors: Rush TS, Powers R The following review discusses the successful application of X-ray, NMR, and molecular modeling in the design of potent and selective inhibitors of matrix metalloproteinases (MMPs) and TNFalpha-converting enzyme (TACE) from Wyeth. The importance of protein and ligand mobility as it impacts...
nmrlearner Journal club 0 11-24-2010 09:25 PM
Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR.
Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR. Lipid-Protein Correlations in Nanoscale Phospholipid Bilayers by Solid-State NMR. Biochemistry. 2010 Aug 30; Authors: Kijac A, Shih AY, Nieuwkoop AJ, Schulten K, Sligar SG, Rienstra CM Nanodiscs are an example of discoidal nanoscale lipid/protein particles that have been extremely useful for the biochemical and biophysical characterization of membrane proteins. They are discoidal lipid bilayer fragments encircled and stabilized by two amphipathic helical...
nmrlearner Journal club 0 09-02-2010 03:58 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:12 AM.


Map