Related ArticlesOligomerization of the EGF receptor transmembrane domain: a 2H NMR study in lipid bilayers.
Biochemistry. 1997 Oct 14;36(41):12616-24
Authors: Jones DH, Rigby AC, Barber KR, Grant CW
During the course of a previous study by wideline 2H NMR, we noted spectral features suggesting the possibility of monitoring homodimer/oligomer interactions between transmembrane domains of the EGF receptor in lipid bilayers [Rigby, A. R., Shaw, G. S., Barber, K. R., & Grant, C. W. M. (1996) Biochemistry 35, 12591-12601]. In the present work this possibility was explored using the 34-residue peptide EGFRtm. The peptide sequence included the 23 amino acid hydrophobic stretch thought to span the membrane (Ile622-Met644 of the EGF receptor), plus the first 10 amino acids of the receptor's cytoplasmic domain (Arg645-Thr654). Selective deuteration was carried out at sites corresponding to Ala623, Met644, and Val650. Samples were studied from 12 to 65 degrees C by 2H NMR in fluid membranes having low peptide concentration (1 mol %) or high peptide concentration (6 mol %). Methyl groups proved to be technically particularly attractive probe locations. Reversible homodimer/oligomer interactions were detected in membranes of the common natural phospholipid 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), without cholesterol. Effects on the EGF receptor transmembrane domain included alterations in peptide backbone motional order and/or conformation at the site of Ala623 within the membrane, and alterations in motional properties of the Val650 side chain in the cytoplasmic domain. There was little spectral evidence of stable oligomer formation except at the lowest temperature studied. Addition of 33% cholesterol to these membranes was accompanied by spectral changes consistent with the formation of more stable peptide oligomers, and by evidence that peptide-peptide interactions were sensed at all three probe locations. Peptide-peptide interactions remained easily reversible, particularly at higher temperatures. Freeze-fracture electron microscopy of the NMR samples demonstrated peptide-related intramembranous particles traversing the membranes. To our knowledge, this is the first electron microscopy description of receptor tyrosine kinases or their fragments in model membranes. In the presence of cholesterol, the peptide-related particles were generally larger, more sharply demarcated, and showed a tendency to cluster. These observations relate to models of receptor lateral association as an aspect of signal transduction, and to forces that may determine protein sorting and organization in cell membranes. We suggest that the cholesterol effects reflect a general phenomenon rather than one specific to the EGF receptor.
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment.
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment.
Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment.
J Biomol NMR. 2011 Jan 19;
Authors: Fan Y, Shi L, Ladizhansky V, Brown LS
Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties...
nmrlearner
Journal club
0
01-21-2011 01:22 AM
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy.
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy.
Structure and dynamics of the lipid modifications of a transmembrane ?-helical peptide determined by (2)H solid-state NMR spectroscopy.
Biochim Biophys Acta. 2010 Dec 28;
Authors: Penk A, Müller M, Scheidt HA, Langosch D, Huster D
The fusion of biological membranes is mediated by integral membrane proteins with ?-helical transmembrane segments. Additionally, those proteins are often modified by the covalent...
[NMR paper] 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of
15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.
Related Articles 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.
J Magn Reson. 2005 Apr;173(2):322-7
Authors: Chekmenev EY, Hu J, Gor'kov PL, Brey WW, Cross TA, Ruuge A, Smirnov AI
This communication reports the first...
[NMR paper] High-resolution structure of the oligomerization domain of p53 by multidimensional NM
High-resolution structure of the oligomerization domain of p53 by multidimensional NMR.
Related Articles High-resolution structure of the oligomerization domain of p53 by multidimensional NMR.
Science. 1994 Jul 15;265(5170):386-91
Authors: Clore GM, Omichinski JG, Sakaguchi K, Zambrano N, Sakamoto H, Appella E, Gronenborn AM
The three-dimensional structure of the oligomerization domain (residues 319 to 360) of the tumor suppressor p53 has been solved by multidimensional heteronuclear magnetic resonance (NMR) spectroscopy. The domain forms a...