Related ArticlesOff-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates.
Biochemistry. 1990 Aug 21;29(33):7547-57
Authors: Caines GH, Schleich T, Morgan CF, Farnsworth PN
The rotational diffusion behavior of phosphorus metabolites present in calf lens cortical and nuclear homogenates was investigated by the NMR technique of 31P off-resonance rotating frame spin-lattice relaxation as a means of assessing the occurrence and extent of phosphorus metabolite-lens protein interactions. 31P NMR spectra of calf lens homogenates were obtained at 10 and 18 degrees C (below and above the cold cataract phase transition temperature, respectively) at 7.05 T. Effective rotational correlation times (tau 0,eff) for the major phosphorus metabolites present in cortical and nuclear bovine calf lens homogenates were derived from nonlinear least-squares analysis of R vs omega e (spectral intensity ratio vs precessional frequency about the effective field) data with the assumption of isotropic reorientational motion. Intramolecular dipole-dipole (1H-31P, 31P-31P), chemical shift anisotropy (CSA), and solvent (water) translational intermolecular dipole-dipole (1H-31P) relaxation contributions were assumed in the analyses. In those cases where the limiting value of the spectral intensity ratio failed to reach unity at large offset frequency, a modified formalism incorporating chemical exchange mediated saturation transfer between two sites was used. Values of tau 0,eff for phosphorus metabolites present in the cortex varied from a low of ca. 2 ns [L-alpha-glycero-phosphocholine (GPC)] to a high of 12 ns (alpha-ATP) at 10 degrees C, whereas at 18 degrees C the range was from ca. 1 to 9 ns. For the nucleus the tau 0,eff values ranged from ca. 3 ns (GPC) to 41 ns (Pi) at 10 degrees C; at 18 degrees C the corresponding values ranged from 4 to 39 ns. For PME (phosphomonoester; in lens the predominant metabolite is L-alpha-glycerol phosphate) at 18 degrees C evidence was obtained for binding and subsequent exchange with solid like protein domains. The diversity in tau 0,eff values for lenticular phosphorus metabolites is suggestive of differential binding to more slowly tumbling macromolecular species, most likely lens crystallin proteins. Corresponding measurement of tau 0,eff values for the mobile protein fraction present in calf lens cortical and nuclear homogenates at 10 and 18 degrees C, by 13C off-resonance rotating frame spin-lattice relaxation, provided average macromolecular correlation times that were assumed to represent the bound metabolite state. A fast-exchange model (on the T1 time scale), between free and bound forms, was employed in the analysis of the metabolite R vs omega e curves to yield the
[NMR paper] An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement an
An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation.
Related Articles An NMR study of the origin of dioxygen-induced spin-lattice relaxation enhancement and chemical shift perturbation.
J Magn Reson. 2004 Dec;171(2):225-32
Authors: Prosser RS, Luchette PA
Due to its depth-dependent solubility, oxygen exerts paramagnetic effects which become progressively greater toward the hydrophobic interior of micelles, and lipid bilayer membranes. This paramagnetic gradient, which is manifested...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions
Publication year: 2010
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 10 November 2010</br>
Galina, Diakova , Yanina, Goddard , Jean-Pierre, Korb , Robert G., Bryant</br>
The paramagnetic contributions to water proton spin-lattice relaxation rate constants in protein systems spin-labeled with nitroxide radicals were re-examined. As noted by others, the strength of the dipolar coupling between water protons and the protein-bound nitroxide radical often appears to...
nmrlearner
Journal club
0
11-11-2010 04:33 PM
Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.
Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.
Related Articles Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.
J Magn Reson. 2010 Sep 24;
Authors: Blicharska B, Peemoeller H, Witek M
Assuming dipole-dipole interaction as the dominant relaxation mechanism of protons of water molecules adsorbed onto macromolecule (biopolymer) surfaces we have been able to model the dependences of relaxation rates on temperature and frequency. For adsorbed water molecules the correlation times are...
nmrlearner
Journal club
0
10-22-2010 04:33 PM
[NMR paper] Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and
Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
Related Articles Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
J Magn Reson B. 1994 May;104(1):11-25
Authors: Kuwata K, Brooks D, Yang H, Schleich T
The derivation of a generalized relaxation matrix equation for the off-resonance rotating-frame spin-lattice...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and
Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
Related Articles Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
J Magn Reson B. 1994 May;104(1):11-25
Authors: Kuwata K, Brooks D, Yang H, Schleich T
The derivation of a generalized relaxation matrix equation for the off-resonance rotating-frame spin-lattice...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] A 31P-NMR spin-lattice relaxation and 31P[1H] nuclear Overhauser effect study of soni
A 31P-NMR spin-lattice relaxation and 31P nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles A 31P-NMR spin-lattice relaxation and 31P nuclear Overhauser effect study of sonicated small unilamellar phosphatidylcholine vesicles.
Biochim Biophys Acta. 1992 Feb 17;1104(1):137-46
Authors: Tauskela JS, Thompson M
The motional properties of the inner and outer monolayer headgroups of...