The study of intermediates in the protein folding pathway provides a wealth of information about the energy landscape. The intermediates also frequently initiate pathogenic fibril formations. While observing the intermediates is difficult due to their transient nature, extreme conditions can partially unfold the proteins and provide a glimpse of the intermediate states. Here, we observe the high resolution structure of a hydrophobic core mutant of Ubiquitin at an extreme acidic pH by nuclear magnetic resonance (NMR) spectroscopy. In the structure, the native secondary and tertiary structure is conserved for a major part of the protein. However, a long loop between the beta strands ?3 and ?5 is partially unfolded. The altered structure is supported by fluorescence data and the difference in free energies between the native state and the intermediate is reflected in the denaturant induced melting curves. The unfolded region includes amino acids that are critical for interaction with cofactors as well as for assembly of poly-Ubiquitin chains. The structure at acidic pH resembles a late folding intermediate of Ubiquitin and indicates that upon stabilization of the protein's core, the long loop converges on the core in the final step of the folding process.
[NMR paper] Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR.
Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR.
Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR.
Protein Sci. 2016 Apr 25;
Authors: Surana P, Das R
Abstract
The study of intermediates in the protein folding pathway provides a wealth of information about the energy landscape. The intermediates also frequently initiate pathogenic fibril formations. While observing the intermediates is difficult due to their transient nature, extreme conditions can partially unfold the...
nmrlearner
Journal club
0
04-26-2016 12:14 PM
Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR
Observing a late folding intermediate of Ubiquitin at atomic resolution by NMR
Abstract
The study of intermediates in the protein folding pathway provides a wealth of information about the energy landscape. The intermediates also frequently initiate pathogenic fibril formations. While observing the intermediates is difficult due to their transient nature, extreme conditions can partially unfold the proteins and provide a glimpse of the intermediate states. Here, we observe the high resolution structure of a hydrophobic core mutant of Ubiquitin at an extreme acidic pH by Nuclear Magnetic...
Researchers Film Complex Process of Protein Folding At Atomic Resolution - AZoNano.com
<img alt="" height="1" width="1" />
Researchers Film Complex Process of Protein Folding At Atomic Resolution
AZoNano.com
We hoped that these quantities would be sufficient to examine the intermediate forms with nuclear magnetic resonance (NMR) spectroscopy," said Markus Zweckstetter, head of the research groups "Protein Structure Determination using MNR" at the MPIbpc ...
and more »
Researchers Film Complex Process of Protein Folding At Atomic Resolution - AZoNano.com
More...
nmrlearner
Online News
0
02-12-2013 11:00 AM
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study
Nonnative Interactions in the FF Domain Folding Pathway from an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study
Dmitry M. Korzhnev, Robert M. Vernon, Tomasz L. Religa, Alexandar L. Hansen, David Baker, Alan R. Fersht and Lewis E. Kay
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja203686t/aop/images/medium/ja-2011-03686t_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja203686t
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
06-29-2011 04:45 AM
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation Dispersion Study.
J Am Chem Soc. 2011 Jun 6;
Authors: Korzhnev DM, Vernon RM, Religa TL, Hansen AL, Baker D, Fersht AR, Kay LE
Several all-helical single-domain proteins have been shown to fold rapidly (us timescale) to a compact...
nmrlearner
Journal club
0
06-07-2011 11:05 AM
[NMR paper] A protein folding intermediate of ribonuclease T1 characterized at high resolution by
A protein folding intermediate of ribonuclease T1 characterized at high resolution by 1D and 2D real-time NMR spectroscopy.
Related Articles A protein folding intermediate of ribonuclease T1 characterized at high resolution by 1D and 2D real-time NMR spectroscopy.
J Mol Biol. 1999 Jan 15;285(2):829-42
Authors: Balbach J, Steegborn C, Schindler T, Schmid FX
The rate-limiting step during the refolding of S54G/P55N ribonuclease T1 is determined by the slow trans-->cis prolyl isomerisation of Pro39. We investigated the refolding of this variant by...
nmrlearner
Journal club
0
11-18-2010 07:05 PM
A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution - Sec
A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution - Securities Industry News (blog) (subscription)
<img alt="" height="1" width="1" />
A Transient and Low-Populated Protein-Folding Intermediate at Atomic Resolution
Securities Industry News (blog) (subscription)
In this work, we used chemical shifts and bond-vector orientation constraints obtained from nuclear magnetic resonance relaxation dispersion spectroscopy, ...
Read More