BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-20-2017, 10:12 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Observation by Real-Time NMR and Interpretation of Length- and Location-Dependent Deamination Activity of APOBEC3B.

Observation by Real-Time NMR and Interpretation of Length- and Location-Dependent Deamination Activity of APOBEC3B.

Related Articles Observation by Real-Time NMR and Interpretation of Length- and Location-Dependent Deamination Activity of APOBEC3B.

ACS Chem Biol. 2017 Nov 17;12(11):2704-2708

Authors: Wan L, Nagata T, Morishita R, Takaori-Kondo A, Katahira M

Abstract
Human APOBEC3B (A3B) deaminates a cytosine into a uracil in single-stranded (ss) DNA, resulting in human cancers. A3B's deamination activity is conferred by its C-terminal domain (CTD). However, little is known about the mechanism by which target sequences are searched and deaminated. Here, we applied a real-time NMR method to elucidate the deamination properties. We found that A3B CTD shows higher activity toward its target sequence in short ssDNA and efficiently deaminates a target sequence located near the center of ssDNA. These properties are quite different from those of well-studied APOBEC3G, which shows higher activity toward its target sequence in long ssDNA and one located close to the 5'-end. The unique properties of the A3B CTD can be rationally interpreted by considering that after nonspecific binding to ssDNA, A3B slides only for a relatively short distance and tends to dissociate from the ssDNA before reaching the target sequence.


PMID: 28952713 [PubMed - indexed for MEDLINE]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Real-Time Observation of the Interaction between Thioflavin T and an Amyloid Protein by Using High-Sensitivity Rheo-NMR.
Real-Time Observation of the Interaction between Thioflavin T and an Amyloid Protein by Using High-Sensitivity Rheo-NMR. Real-Time Observation of the Interaction between Thioflavin T and an Amyloid Protein by Using High-Sensitivity Rheo-NMR. Int J Mol Sci. 2017 Oct 28;18(11): Authors: Iwakawa N, Morimoto D, Walinda E, Kawata Y, Shirakawa M, Sugase K Abstract Amyloid fibril formation is associated with numerous neurodegenerative diseases. To elucidate the mechanism of fibril formation, the thioflavin T (ThT) fluorescence assay is...
nmrlearner Journal club 0 11-17-2017 12:42 PM
[NMR paper] NMR Structure of the APOBEC3B Catalytic Domain: Structural Basis for Substrate Binding and DNA Deaminase Activity.
NMR Structure of the APOBEC3B Catalytic Domain: Structural Basis for Substrate Binding and DNA Deaminase Activity. Related Articles NMR Structure of the APOBEC3B Catalytic Domain: Structural Basis for Substrate Binding and DNA Deaminase Activity. Biochemistry. 2016 May 10; Authors: Byeon IL, Byeon CH, Wu T, Mitra M, Singer D, Levin JG, Gronenborn AM Abstract Human APOBEC3B (A3B) is a member of the APOBEC3 (A3) family of cytidine deaminases, which function as DNA mutators and restrict viral pathogens and endogenous...
nmrlearner Journal club 0 05-11-2016 08:04 PM
[NMR paper] Catalytic analysis of APOBEC3G involving real-time NMR spectroscopy reveals nucleic acid determinants for deamination.
Catalytic analysis of APOBEC3G involving real-time NMR spectroscopy reveals nucleic acid determinants for deamination. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.plosone.org-images-pone_120x30.png http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.ncbi.nlm.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Catalytic analysis of APOBEC3G involving real-time NMR spectroscopy reveals nucleic acid determinants for deamination. PLoS One. 2015;10(4):e0124142 Authors: Kamba K, Nagata T,...
nmrlearner Journal club 0 04-27-2016 01:51 PM
Real-time pure shift 15 N HSQC of proteins: a real improvement in resolution and sensitivity
Real-time pure shift 15 N HSQC of proteins: a real improvement in resolution and sensitivity Abstract Spectral resolution in proton NMR spectroscopy is reduced by the splitting of resonances into multiplets due to the effect of homonuclear scalar couplings. Although these effects are often hidden in protein NMR spectroscopy by low digital resolution and routine apodization, behind the scenes homonuclear scalar couplings increase spectral overcrowding. The possibilities for biomolecular NMR offered by new pure shift NMR methods are illustrated here....
nmrlearner Journal club 0 03-04-2015 08:56 AM
[NMR paper] Quantitative analysis of location- and sequence-dependent deamination by APOBEC3G using real-time NMR spectroscopy.
Quantitative analysis of location- and sequence-dependent deamination by APOBEC3G using real-time NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Quantitative analysis of location- and sequence-dependent deamination by APOBEC3G using real-time NMR spectroscopy. Angew Chem Int Ed Engl. 2014 Feb 24;53(9):2349-52 Authors: Furukawa A, Sugase K, Morishita R, Nagata T, Kodaki T, Takaori-Kondo A, Ryo A, Katahira M ...
nmrlearner Journal club 0 10-24-2014 07:18 PM
[NMR paper] Real-Time Monitoring of New Delhi Metallo-?-Lactamase Activity in Living Bacterial Cells by (1) H NMR Spectroscopy.
Real-Time Monitoring of New Delhi Metallo-?-Lactamase Activity in Living Bacterial Cells by (1) H NMR Spectroscopy. Related Articles Real-Time Monitoring of New Delhi Metallo-?-Lactamase Activity in Living Bacterial Cells by (1) H NMR Spectroscopy. Angew Chem Int Ed Engl. 2014 Jan 23; Authors: Ma J, McLeod S, Maccormack K, Sriram S, Gao N, Breeze AL, Hu J Abstract Disconnections between in vitro responses and those observed in whole cells confound many attempts to design drugs in areas of serious medical need. A method based on 1D (1) H...
nmrlearner Journal club 0 01-25-2014 02:07 PM
Defining a Stem Length-Dependent Binding Mechanism for the Cocaine-Binding Aptamer. A
Defining a Stem Length-Dependent Binding Mechanism for the Cocaine-Binding Aptamer. A Combined NMR and Calorimetry Study http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi100952k/aop/images/medium/bi-2010-00952k_0010.gif Biochemistry DOI: 10.1021/bi100952k http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/HDHRgmphxQs More...
nmrlearner Journal club 0 09-08-2010 07:29 AM
[NMR paper] pH-dependent redox activity and fluxionality of the copper site in amicyanin from Thi
pH-dependent redox activity and fluxionality of the copper site in amicyanin from Thiobacillus yersutus as studied by 300- and 600- MHz 1H NMR. Related Articles pH-dependent redox activity and fluxionality of the copper site in amicyanin from Thiobacillus yersutus as studied by 300- and 600- MHz 1H NMR. J Biol Chem. 1990 Feb 15;265(5):2768-74 Authors: Lommen A, Canters GW The kinetics of the deuteronation of one of the copper ligand histidines of the reduced Type I blue-copper protein amicyanin from Thiobacillus versutus was studied as a...
nmrlearner Journal club 0 08-21-2010 10:48 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:14 AM.


Map