O-tert-Butyltyrosine, an NMR tag for high-molecular weight systems and measurements of submicromolar ligand binding affinities.
J Am Chem Soc. 2015 Mar 19;
Authors: Chen WN, Kuppan KV, Lee MD, Jaudzems K, Huber T, Otting G
Abstract
O-tert-butyl-tyrosine (Tby) is an unnatural amino acid that can be site-specifically incorporated into proteins using established orthogonal aminoacyl-tRNA synthetase/tRNA systems. Here we show that the tert-butyl group presents an outstanding nuclear magnetic resonance (NMR) tag that can readily be observed in one-dimensional 1H NMR spectra without any isotope labeling. Owing to rapid bond rotations and the chemical equivalence of the protons of a solvent-exposed tert-butyl group from Tby, the singlet resonance from the tert-butyl group generates an easily detectable narrow signal in a spectral region with limited overlap with other methyl resonances. The potential of the tert-butyl 1H NMR signal in protein research is illustrated by the observation and assignment of two resonances in the Bacillus stearothermophilus DnaB hexamer (320 kDa), demonstrating that this protein preferentially assumes a three-fold rather than six-fold symmetry in solution, and by the quantitative measurement of the submicromolar dissociation constant Kd (0.2 ?M) of the complex between glutamate and the E. coli aspartate/glutamate binding protein (DEBP, 32 kDa). The outstanding signal height of the 1H NMR signal of the Tby tert-butyl group allows Kd measurements using less concentrated protein solutions than usual, providing access to Kd values one order of magnitude lower than established NMR methods that employ direct protein detection for Kd measurements.
PMID: 25789794 [PubMed - as supplied by publisher]
[NMR paper] Funnel Metadynamics and Solution NMR to Estimate Protein-Ligand Affinities.
Funnel Metadynamics and Solution NMR to Estimate Protein-Ligand Affinities.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Funnel Metadynamics and Solution NMR to Estimate Protein-Ligand Affinities.
J Am Chem Soc. 2014 Dec 30;
Authors: Lancelin J
Abstract
One of the intrinsic properties of proteins is their capacity to interact selectively with other molecules in their environment inducing many chemical equilibria each differentiated by the mutual affinities of the...
nmrlearner
Journal club
0
01-01-2015 11:00 PM
Selective editing of Val and Leu methyl groups in high molecular weight protein NMR
Selective editing of Val and Leu methyl groups in high molecular weight protein NMR
Abstract The development of methyl-TROSY approaches and specific 13Câ??1H labeling of Ile, Leu and Val methyl groups in highly deuterated proteins has made it possible to study high molecular weight proteins, either alone or in complexes, using solution nuclear magnetic resonance (NMR) spectroscopy. Here we present 2-dimensional (2D) and 3-dimensional (3D) NMR experiments designed to achieve complete separation of the methyl resonances of Val and Leu, labeled using the same precursor, α-ketoisovalerate...
nmrlearner
Journal club
0
05-01-2012 07:06 AM
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins
Raquel Godoy-Ruiz, Chenyun Guo and Vitali Tugarinov
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1083656/aop/images/medium/ja-2010-083656_0009.gif
Journal of the American Chemical Society
DOI: 10.1021/ja1083656
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/hxZ4cabF688
nmrlearner
Journal club
0
12-08-2010 10:04 AM
[NMR paper] Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin r
Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin relaxation: an application to an 82-kDa enzyme.
Related Articles Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin relaxation: an application to an 82-kDa enzyme.
J Am Chem Soc. 2005 Jun 8;127(22):8214-25
Authors: Tugarinov V, Ollerenshaw JE, Kay LE
New NMR experiments for the measurement of side-chain dynamics in high molecular weight ( approximately 100 kDa) proteins are presented. The experiments quantify (2)H spin...
nmrlearner
Journal club
0
11-25-2010 08:21 PM
[NMR paper] Quantitative NMR studies of high molecular weight proteins: application to domain ori
Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G.
Related Articles Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G.
J Mol Biol. 2003 Apr 11;327(5):1121-33
Authors: Tugarinov V, Kay LE
A high-resolution multidimensional NMR study of ligand-binding to Escherichia coli malate synthase G (MSG), a 723-residue monomeric enzyme (81.4...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Study of wheat high molecular weight 1Dx5 subunit by (13)C and (1)H solid-state NMR.
Study of wheat high molecular weight 1Dx5 subunit by (13)C and (1)H solid-state NMR. II. Roles of nonrepetitive terminal domains and length of repetitive domain.
Related Articles Study of wheat high molecular weight 1Dx5 subunit by (13)C and (1)H solid-state NMR. II. Roles of nonrepetitive terminal domains and length of repetitive domain.
Biopolymers. 2002 Oct 15;65(2):158-68
Authors: Alberti E, Gilbert SM, Tatham AS, Shewry PR, Naito A, Okuda K, Saitô H, Gil AM
This work follows a previous article that addressed the role of disulfide bonds in...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and 1H solid-state
Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and 1H solid-state NMR spectroscopy. I. Role of covalent crosslinking.
Related Articles Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and 1H solid-state NMR spectroscopy. I. Role of covalent crosslinking.
Biopolymers. 2002;67(6):487-98
Authors: Alberti E, Gilbert SM, Tatham AS, Shewry PR, Gil AM
This work describes a carbon and proton solid-state NMR study of the hydration of a high molecular weight wheat glutenin subunit, 1Dx5. The effect of the presence of...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP rece
Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP)
Related Articles Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP)
J Biomol NMR. 2000 Jan;16(1):79-80
Authors: Won HS, Yamazaki T, Lee TW, Jee JG, Yoon MK, Park SH, Otomo T, Aiba H, Kyogoku Y, Lee BJ