BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-20-2015, 04:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default O-tert-Butyltyrosine, an NMR tag for high-molecular weight systems and measurements of submicromolar ligand binding affinities.

O-tert-Butyltyrosine, an NMR tag for high-molecular weight systems and measurements of submicromolar ligand binding affinities.

O-tert-Butyltyrosine, an NMR tag for high-molecular weight systems and measurements of submicromolar ligand binding affinities.

J Am Chem Soc. 2015 Mar 19;

Authors: Chen WN, Kuppan KV, Lee MD, Jaudzems K, Huber T, Otting G

Abstract
O-tert-butyl-tyrosine (Tby) is an unnatural amino acid that can be site-specifically incorporated into proteins using established orthogonal aminoacyl-tRNA synthetase/tRNA systems. Here we show that the tert-butyl group presents an outstanding nuclear magnetic resonance (NMR) tag that can readily be observed in one-dimensional 1H NMR spectra without any isotope labeling. Owing to rapid bond rotations and the chemical equivalence of the protons of a solvent-exposed tert-butyl group from Tby, the singlet resonance from the tert-butyl group generates an easily detectable narrow signal in a spectral region with limited overlap with other methyl resonances. The potential of the tert-butyl 1H NMR signal in protein research is illustrated by the observation and assignment of two resonances in the Bacillus stearothermophilus DnaB hexamer (320 kDa), demonstrating that this protein preferentially assumes a three-fold rather than six-fold symmetry in solution, and by the quantitative measurement of the submicromolar dissociation constant Kd (0.2 ?M) of the complex between glutamate and the E. coli aspartate/glutamate binding protein (DEBP, 32 kDa). The outstanding signal height of the 1H NMR signal of the Tby tert-butyl group allows Kd measurements using less concentrated protein solutions than usual, providing access to Kd values one order of magnitude lower than established NMR methods that employ direct protein detection for Kd measurements.


PMID: 25789794 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Funnel Metadynamics and Solution NMR to Estimate Protein-Ligand Affinities.
Funnel Metadynamics and Solution NMR to Estimate Protein-Ligand Affinities. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Funnel Metadynamics and Solution NMR to Estimate Protein-Ligand Affinities. J Am Chem Soc. 2014 Dec 30; Authors: Lancelin J Abstract One of the intrinsic properties of proteins is their capacity to interact selectively with other molecules in their environment inducing many chemical equilibria each differentiated by the mutual affinities of the...
nmrlearner Journal club 0 01-01-2015 11:00 PM
Selective editing of Val and Leu methyl groups in high molecular weight protein NMR
Selective editing of Val and Leu methyl groups in high molecular weight protein NMR Abstract The development of methyl-TROSY approaches and specific 13Câ??1H labeling of Ile, Leu and Val methyl groups in highly deuterated proteins has made it possible to study high molecular weight proteins, either alone or in complexes, using solution nuclear magnetic resonance (NMR) spectroscopy. Here we present 2-dimensional (2D) and 3-dimensional (3D) NMR experiments designed to achieve complete separation of the methyl resonances of Val and Leu, labeled using the same precursor, α-ketoisovalerate...
nmrlearner Journal club 0 05-01-2012 07:06 AM
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins
Alanine Methyl Groups as NMR Probes of Molecular Structure and Dynamics in High-Molecular-Weight Proteins Raquel Godoy-Ruiz, Chenyun Guo and Vitali Tugarinov http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja1083656/aop/images/medium/ja-2010-083656_0009.gif Journal of the American Chemical Society DOI: 10.1021/ja1083656 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/hxZ4cabF688
nmrlearner Journal club 0 12-08-2010 10:04 AM
[NMR paper] Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin r
Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin relaxation: an application to an 82-kDa enzyme. Related Articles Probing side-chain dynamics in high molecular weight proteins by deuterium NMR spin relaxation: an application to an 82-kDa enzyme. J Am Chem Soc. 2005 Jun 8;127(22):8214-25 Authors: Tugarinov V, Ollerenshaw JE, Kay LE New NMR experiments for the measurement of side-chain dynamics in high molecular weight ( approximately 100 kDa) proteins are presented. The experiments quantify (2)H spin...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] Quantitative NMR studies of high molecular weight proteins: application to domain ori
Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G. Related Articles Quantitative NMR studies of high molecular weight proteins: application to domain orientation and ligand binding in the 723 residue enzyme malate synthase G. J Mol Biol. 2003 Apr 11;327(5):1121-33 Authors: Tugarinov V, Kay LE A high-resolution multidimensional NMR study of ligand-binding to Escherichia coli malate synthase G (MSG), a 723-residue monomeric enzyme (81.4...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Study of wheat high molecular weight 1Dx5 subunit by (13)C and (1)H solid-state NMR.
Study of wheat high molecular weight 1Dx5 subunit by (13)C and (1)H solid-state NMR. II. Roles of nonrepetitive terminal domains and length of repetitive domain. Related Articles Study of wheat high molecular weight 1Dx5 subunit by (13)C and (1)H solid-state NMR. II. Roles of nonrepetitive terminal domains and length of repetitive domain. Biopolymers. 2002 Oct 15;65(2):158-68 Authors: Alberti E, Gilbert SM, Tatham AS, Shewry PR, Naito A, Okuda K, Saitô H, Gil AM This work follows a previous article that addressed the role of disulfide bonds in...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and 1H solid-state
Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and 1H solid-state NMR spectroscopy. I. Role of covalent crosslinking. Related Articles Study of high molecular weight wheat glutenin subunit 1Dx5 by 13C and 1H solid-state NMR spectroscopy. I. Role of covalent crosslinking. Biopolymers. 2002;67(6):487-98 Authors: Alberti E, Gilbert SM, Tatham AS, Shewry PR, Gil AM This work describes a carbon and proton solid-state NMR study of the hydration of a high molecular weight wheat glutenin subunit, 1Dx5. The effect of the presence of...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP rece
Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP) Related Articles Backbone NMR assignments of a high molecular weight protein (47 kDa), cyclic AMP receptor protein (apo-CRP) J Biomol NMR. 2000 Jan;16(1):79-80 Authors: Won HS, Yamazaki T, Lee TW, Jee JG, Yoon MK, Park SH, Otomo T, Aiba H, Kyogoku Y, Lee BJ
nmrlearner Journal club 0 11-18-2010 09:15 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:04 PM.


Map