BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-10-2017, 12:51 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Non-equilibrium hydrogen exchange for determination of H-bond strength and water accessibility in solid proteins

Non-equilibrium hydrogen exchange for determination of H-bond strength and water accessibility in solid proteins

Abstract

We demonstrate measurement of non-equilibrium backbone amide hydrogenâ??deuterium exchange rates (HDX) for solid proteins. The target of this study are the slowly exchanging residues in solid samples, which are associated with stable secondary-structural elements of proteins. These hydrogen exchange processes escape methods measuring equilibrium exchange rates of faster processes. The method was applied to a micro-crystalline preparation of the SH3 domain of chicken α-spectrin. Therefore, from a 100% back-exchanged micro-crystalline protein preparation, the supernatant buffer was exchanged by a partially deuterated buffer to reach a final protonation level of approximately 20% before packing the sample in a 1.3Â*mm rotor. Tracking of the HN peak intensities for 2Â*weeks reports on site-specific hydrogen bond strength and also likely reflects water accessibility in a qualitative manner. H/D exchange can be directly determined for hydrogen-bonded amides using 1H detection under fast magic angle spinning. This approach complements existing methods and provides the means to elucidate interesting site-specific characteristics for protein functionality in the solid state.



Source: Journal of Biomolecular NMR
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Hydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations.
Hydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations. Related Articles Hydrogen bond strength in membrane proteins probed by time-resolved (1)H-detected solid-state NMR and MD simulations. Solid State Nucl Magn Reson. 2017 Mar 18;: Authors: Medeiros-Silva J, Jekhmane S, Baldus M, Weingarth M Abstract (1)H-detected solid-state NMR in combination with (1)H/(2)D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins....
nmrlearner Journal club 0 03-28-2017 03:06 PM
Hydrogen bond strength in membrane proteins by time-resolved 1H-detected solid-state NMR and MD simulations
Hydrogen bond strength in membrane proteins by time-resolved 1H-detected solid-state NMR and MD simulations Publication date: Available online 18 March 2017 Source:Solid State Nuclear Magnetic Resonance</br> Author(s): João Medeiros-Silva, Shehrazade Jekhmane, Marc Baldus, Markus Weingarth</br> 1H-detected solid-state NMR in combination with 1H/2D exchange steps allows for the direct identification of very strong hydrogen bonds in membrane proteins. On the example of the membrane-embedded potassium channel KcsA, we quantify the longevity of such very strong...
nmrlearner Journal club 0 03-19-2017 07:03 AM
[NMR paper] A Dynamic Equilibrium of Three Hydrogen-Bond Conformers Explains the NMR Spectrum of the Active Site of Photoactive Yellow Protein.
A Dynamic Equilibrium of Three Hydrogen-Bond Conformers Explains the NMR Spectrum of the Active Site of Photoactive Yellow Protein. Related Articles A Dynamic Equilibrium of Three Hydrogen-Bond Conformers Explains the NMR Spectrum of the Active Site of Photoactive Yellow Protein. J Chem Theory Comput. 2016 Sep 14; Authors: Taenzler PJ, Sadeghian K, Ochsenfeld C Abstract A theoretical study on the NMR shifts of the hydrogen bond network around the chromophore, para-coumaric acid (pCA), of photoactive yellow protein (PYP) is...
nmrlearner Journal club 0 09-22-2016 06:31 AM
HighField Solid-State NMR Spectroscopy Investigation of 15N-Labeled Rosette Nanotubes: Hydrogen Bond Network and Channel-Bound Water
HighField Solid-State NMR Spectroscopy Investigation of 15N-Labeled Rosette Nanotubes: Hydrogen Bond Network and Channel-Bound Water Hicham Fenniri, Grigory A. Tikhomirov, Darren H. Brouwer, Souhaila Bouatra, Mounir El Bakkari, Zhimin Yan, Jae-Young Cho and Takeshi Yamazaki http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/jacs.6b02420/20160505/images/medium/ja-2016-02420c_0005.gif Journal of the American Chemical Society DOI: 10.1021/jacs.6b02420 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 05-06-2016 03:39 AM
Measuring hydrogen exchange in proteins by selective water saturation in 1Hâ??15N SOFAST/BEST-type experiments: advantages and limitations
Measuring hydrogen exchange in proteins by selective water saturation in 1Hâ??15N SOFAST/BEST-type experiments: advantages and limitations Abstract HETex-SOFAST NMR (Schanda et al. in J Biomol NMR 33:199â??211, 2006) has been proposed some years ago as a fast and sensitive method for semi-quantitative measurement of site-specific amide-water hydrogen exchange effects along the backbone of proteins. Here we extend this concept to BEST readout sequences that provide a better resolution at the expense of some loss in sensitivity. We discuss the...
nmrlearner Journal club 0 08-30-2014 11:00 PM
Liquid State DNP for Water Accessibility Measurements on Spin-labeled Membrane Proteins at Physiological Temperatures
Liquid State DNP for Water Accessibility Measurements on Spin-labeled Membrane Proteins at Physiological Temperatures Publication year: 2012 Source:Journal of Magnetic Resonance</br> Andrin Doll, Enrica Bordignon, Benesh Joseph, René Tschaggelar, Gunnar Jeschke</br> We demonstrate the application of continuous wave dynamic nuclear polarization (DNP) at 0.35 Tesla for site-specific water accessibility studies on spin-labeled membrane proteins at concentrations in the 10-100 micromolar range. The DNP effects at such low concentrations are weak and the experimentally...
nmrlearner Journal club 0 06-16-2012 06:01 AM
[NMR paper] Water-protein hydrogen exchange in the micro-crystalline protein crh as observed by solid state NMR spectroscopy.
Water-protein hydrogen exchange in the micro-crystalline protein crh as observed by solid state NMR spectroscopy. Related Articles Water-protein hydrogen exchange in the micro-crystalline protein crh as observed by solid state NMR spectroscopy. J Biomol NMR. 2005 Jul;32(3):195-207 Authors: Böckmann A, Juy M, Bettler E, Emsley L, Galinier A, Penin F, Lesage A We report site-resolved observation of hydrogen exchange in the micro-crystalline protein Crh. Our approach is based on the use of proton T2' -selective 1H-13C-13C correlation spectra for...
nmrlearner Journal club 0 12-01-2010 06:56 PM
Probing water-accessibility in HET-s(218-289) amyloid fibrils by solid-state NMR.
Probing water-accessibility in HET-s(218-289) amyloid fibrils by solid-state NMR. Probing water-accessibility in HET-s(218-289) amyloid fibrils by solid-state NMR. J Mol Biol. 2010 Nov 18; Authors: Van Melckebeke H, Schanda P, Gath J, Wasmer C, Verel R, Lange A, Meier BH, Böckmann A Despite its importance in the context of conformational diseases, structural information is still sparse for protein fibrils. Hydrogen/deuterium exchange measurements of backbone amides allow to identify hydrogen-bonding patterns and reveal pertinent information about...
nmrlearner Journal club 0 11-26-2010 05:32 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:40 AM.


Map