BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-18-2010, 09:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,700
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The NOESY jigsaw: automated protein secondary structure and main-chain assignment fro

The NOESY jigsaw: automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data.

Related Articles The NOESY jigsaw: automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data.

J Comput Biol. 2000;7(3-4):537-58

Authors: Bailey-Kellogg C, Widge A, Kelley JJ, Berardi MJ, Bushweller JH, Donald BR

High-throughput, data-directed computational protocols for Structural Genomics (or Proteomics) are required in order to evaluate the protein products of genes for structure and function at rates comparable to current gene-sequencing technology. This paper presents the JIGSAW algorithm, a novel high-throughput, automated approach to protein structure characterization with nuclear magnetic resonance (NMR). JIGSAW applies graph algorithms and probabilistic reasoning techniques, enforcing first-principles consistency rules in order to overcome a 5-10% signal-to-noise ratio. It consists of two main components: (1) graph-based secondary structure pattern identification in unassigned heteronuclear NMR data, and (2) assignment of spectral peaks by probabilistic alignment of identified secondary structure elements against the primary sequence. Deferring assignment eliminates the bottleneck faced by traditional approaches, which begin by correlating peaks among dozens of experiments. JIGSAW utilizes only four experiments, none of which requires 13C-labeled protein, thus dramatically reducing both the amount and expense of wet lab molecular biology and the total spectrometer time. Results for three test proteins demonstrate that JIGSAW correctly identifies 79-100% of alpha-helical and 46-65% of beta-sheet NOE connectivities and correctly aligns 33-100% of secondary structure elements. JIGSAW is very fast, running in minutes on a Pentium-class Linux workstation. This approach yields quick and reasonably accurate (as opposed to the traditional slow and extremely accurate) structure calculations. It could be useful for quick structural assays to speed data to the biologist early in an investigation and could in principle be applied in an automation-like fashion to a large fraction of the proteome.

PMID: 11108478 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Exclusively NOESY-based automated NMR assignment and structure determination of proteins
Exclusively NOESY-based automated NMR assignment and structure determination of proteins Abstract A fully automated method is presented for determining NMR solution structures of proteins using exclusively NOESY spectra as input, obviating the need to measure any spectra only for obtaining resonance assignments but devoid of structural information. Applied to two small proteins, the approach yielded structures that coincided closely with conventionally determined structures. Content Type Journal Article Pages 1-10 DOI 10.1007/s10858-011-9502-8
nmrlearner Journal club 0 04-01-2011 09:31 PM
Exclusively NOESY-based automated NMR assignment and structure determination of proteins.
Exclusively NOESY-based automated NMR assignment and structure determination of proteins. Exclusively NOESY-based automated NMR assignment and structure determination of proteins. J Biomol NMR. 2011 Mar 30; Authors: Ikeya T, Jee JG, Shigemitsu Y, Hamatsu J, Mishima M, Ito Y, Kainosho M, Güntert P A fully automated method is presented for determining NMR solution structures of proteins using exclusively NOESY spectra as input, obviating the need to measure any spectra only for obtaining resonance assignments but devoid of structural information....
nmrlearner Journal club 0 03-31-2011 06:24 PM
An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins
An intraresidual i(HCA)CO(CA)NH experiment for the assignment of main-chain resonances in 15N, 13C labeled proteins Abstract An improved pulse sequence, intraresidual i(HCA)CO(CA)NH, is described for establishing solely 13Câ?²(i), 15N(i), 1HN(i) connectivities in uniformly 15N/13C-labeled proteins. In comparison to the â??out-and-backâ?? style intra-HN(CA)CO experiment, the new pulse sequence offers at least two-fold higher experimental resolution in the 13Câ?² dimension and on average 1.6 times higher sensitivity especially for residues in α-helices. Performance of the new experiment...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Protein NMR structure determination with automated NOE-identification in the NOESY sp
Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. Related Articles Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J Biomol NMR. 2002 Nov;24(3):171-89 Authors: Herrmann T, Güntert P, Wüthrich K Novel algorithms are presented for automated NOESY peak picking and NOE signal identification in homonuclear 2D and heteronuclear-resolved 3D -NOESY spectra during de novo protein structure determination by NMR,...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE).
Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE). Related Articles Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE). J Biomol NMR. 2002 Aug;23(4):271-87 Authors: Gronwald W, Moussa S, Elsner R, Jung A, Ganslmeier B, Trenner J, Kremer W, Neidig KP, Kalbitzer HR Automated assignment of NOESY spectra is a prerequisite for automated structure determination of biological macromolecules. With the program KNOWNOE we present a novel, knowledge based approach to this problem. KNOWNOE...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studi
Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2. Related Articles Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2. Biochemistry. 2001 Jun 5;40(22):6559-69 Authors: Flynn PF, Bieber Urbauer RJ, Zhang H, Lee AL, Wand AJ A detailed characterization of the main chain and side chain dynamics in R. capsulatus ferrocytochrome c(2) derived from (2)H NMR relaxation of methyl group resonances is...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Refinement of the main chain directed assignment strategy for the analysis of 1H NMR
Refinement of the main chain directed assignment strategy for the analysis of 1H NMR spectra of proteins. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Refinement of the main chain directed assignment strategy for the analysis of 1H NMR spectra of proteins. Biophys J. 1991 May;59(5):1101-12 Authors: Wand AJ, Nelson SJ The underlying basis of the main...
nmrlearner Journal club 0 08-21-2010 11:16 PM
Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H,1H]-NOESY
Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D -NOESY Francesco Fiorito, Torsten Herrmann, Fred F. Damberger and Kurt Wüthrich Journal of Biomolecular NMR; 2008; 42(1); pp 23-33 Abstract ASCAN is a new algorithm for automatic sequence-specific NMR assignment of amino acid side-chains in proteins, which uses as input the primary structure of the protein, chemical shift lists of 1HN, 15N, 13Cα, 13Cβ and possibly 1Hα from the previous polypeptide backbone assignment, and one or several 3D 13C- or 15N-resolved -NOESY spectra. ASCAN has also been...
Kirby Journal club 0 09-21-2008 11:52 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:50 PM.


Map