BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-17-2010, 11:06 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR triple-quantum filtered relaxation analysis of 17O-water in insulin solutions: an

NMR triple-quantum filtered relaxation analysis of 17O-water in insulin solutions: an insight into the aggregation of insulin and the properties of its bound water.

Related Articles NMR triple-quantum filtered relaxation analysis of 17O-water in insulin solutions: an insight into the aggregation of insulin and the properties of its bound water.

Biophys Chem. 1998 Mar 9;70(3):231-9

Authors: Torres AM, Grieve SM, Kuchel PW

Transverse triple-quantum filtered NMR spectroscopy (TTQF) of 17O-water was used to study the properties of water in insulin solutions at different Zn2+ concentrations and pH values. It was established that strongly bound water molecules are already present in Zn-free insulin. On the assumption that the effective correlation time of a strongly bound water molecule, tau sb, is 10 ns, the apparent number of strongly bound water molecules was approximately 3 to 4 per insulin monomer. Addition of Zn2+ equivalent to approximately 2 g-atoms per hexamer did not produce substantial increases in the overall 17O-water TTQF signal intensity and apparent fraction of bound water. The dramatic enhancement of the TTQF signals observed for samples with a Zn2+/hexamer ratio greater than approximately 2:1 could be attributed to the increase in correlation time of the strongly bound water, due to the formation of higher-order oligomers of the protein.

PMID: 9546200 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins
Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins Abstract Multiplet-filtered and gradient-selected heteronuclear zero-quantum coherence (gsHZQC) TROSY experiments are described for measuring 1Hâ??13C correlations for 13CH3 methyl groups in proteins. These experiments provide improved suppression of undesirable, broad outer components of the heteronuclear zero-quantum multiplet in medium-sized proteins, or in flexible sites of larger proteins, compared to previously described HZQC sequences (Tugarinov et al. in J Am Chem Soc...
nmrlearner Journal club 0 09-17-2011 10:20 AM
[NMR paper] NMR relaxation and water self-diffusion studies in whey protein solutions and gels.
NMR relaxation and water self-diffusion studies in whey protein solutions and gels. Related Articles NMR relaxation and water self-diffusion studies in whey protein solutions and gels. J Agric Food Chem. 2005 Aug 24;53(17):6784-90 Authors: Colsenet R, Mariette F, Cambert M The changes in water proton transverse relaxation behavior induced by aggregation of whey proteins are explained in terms of the simple molecular processes of diffusion and chemical exchange. The water self-diffusion coefficient was measured in whey protein solutions and...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Multiple quantum filtered NMR studies of the interaction between collagen and water i
Multiple quantum filtered NMR studies of the interaction between collagen and water in the tendon. Related Articles Multiple quantum filtered NMR studies of the interaction between collagen and water in the tendon. J Am Chem Soc. 2002 Mar 27;124(12):3125-32 Authors: Eliav U, Navon G We studied the physical processes and the chemical reactions involved in magnetization transfer between water and large proteins, such as collagen, in bovine Achilles tendon. Since the NMR spectrum for such proteins is broadened by very large dipolar interactions,...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] NMR 15N relaxation of the insulin-like growth factor (IGF)-binding domain of IGF bind
NMR 15N relaxation of the insulin-like growth factor (IGF)-binding domain of IGF binding protein-5 (IGFBP-5) determined free in solution and in complex with IGF-II. Related Articles NMR 15N relaxation of the insulin-like growth factor (IGF)-binding domain of IGF binding protein-5 (IGFBP-5) determined free in solution and in complex with IGF-II. Eur J Biochem. 2001 Feb;268(4):1058-65 Authors: Renner C, Holak T 15N NMR relaxation rates of mini-IGFBP-5, an N-terminal insulin-like growth factor binding domain of the insulin-like growth factor...
nmrlearner Journal club 0 11-19-2010 08:32 PM
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions Publication year: 2010 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 10 November 2010</br> Galina, Diakova , Yanina, Goddard , Jean-Pierre, Korb , Robert G., Bryant</br> The paramagnetic contributions to water proton spin-lattice relaxation rate constants in protein systems spin-labeled with nitroxide radicals were re-examined. As noted by others, the strength of the dipolar coupling between water protons and the protein-bound nitroxide radical often appears to...
nmrlearner Journal club 0 11-11-2010 04:33 PM
[NMR paper] Strong and weak binding of water to proteins studied by NMR triple-quantum filtered r
Strong and weak binding of water to proteins studied by NMR triple-quantum filtered relaxation spectroscopy of (17)O-water. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Strong and weak binding of water to proteins studied by NMR triple-quantum filtered relaxation spectroscopy of (17)O-water. Biophys Chem. 1997 Sep 1;67(1-3):187-98 Authors: Torres AM, Grieve SM, Chapman BE, Kuchel PW The triple-quantum filtered (TQF) spin-echo signal of (17)O-water, in the presence...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Observation of reorientationally hindered water in biological tissue using triple qua
Observation of reorientationally hindered water in biological tissue using triple quantum filtered 17O-NMR. Related Articles Observation of reorientationally hindered water in biological tissue using triple quantum filtered 17O-NMR. Biochim Biophys Acta. 1995 Jun 9;1244(2-3):253-8 Authors: Flesche CW, Gruwel ML, Deussen A, Schrader J Water dynamics in aqueous biopolymer solutions often display a two-phase character, resembling water-water and water-protein interactions. Rotationally hindered water molecules in crowded protein environments...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Characterisation by triple-quantum filtered 17O-NMR of water molecules buried in lyso
Characterisation by triple-quantum filtered 17O-NMR of water molecules buried in lysozyme and trapped in a lysozyme-inhibitor complex. Related Articles Characterisation by triple-quantum filtered 17O-NMR of water molecules buried in lysozyme and trapped in a lysozyme-inhibitor complex. Biophys Chem. 1999 Mar 29;77(2-3):111-21 Authors: Baguet E, Hennebert N Triple-quantum filtering NMR sequences were used to study the multiexponential relaxation behaviour of H2 17O in the presence of hen egg white lysozyme. By this means, the fraction and the...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:26 AM.


Map