BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-03-2013, 10:13 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,804
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR as a tool to identify and characterize protein folding intermediates

NMR as a tool to identify and characterize protein folding intermediates

Available online 12 September 2012
Publication year: 2012
Source:Archives of Biochemistry and Biophysics



NMR spectroscopy is one of the few biophysical methods that can provide atomic-level insight into the conformation of partially folded states and/or intermediates present along the protein folding pathway. Such studies are important not only within the context of the protein folding problem, but also to push forward the technique, due to the challenging nature of the systems studied. In fact, new NMR methods have been created, and applied, in an attempt to characterize the conformational features of the states along the folding pathway. Describing the structures along the folding landscape is of key importance to comprehend the folding reaction, design new proteins and to understand how several polypeptide chains are implicated in pathogenic amyloid states. The last advances in several approaches, which use NMR: (i) to monitor the protein folding pathway and/or, (ii) to characterize the structure of the intermediate states in such reaction are reviewed in this work.
Graphical abstract

Highlights

? Structures of intermediates at atomic-resolution have been obtained by NMR. ? Intermediates have native-like topology. ? Intermediates have non-native contacts. ? The NMR view of folding agrees with that provided by other biophysical probes.





More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion [Biophysics and Computational Biology]
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion Meinhold, D. W., Wright, P. E.... Date: 2011-05-31 Detailed understanding of protein function and malfunction hinges on the ability to characterize transiently populated states and the transitions between them. Here, we use 15N, , and 13CO NMR R2 relaxation dispersion to investigate spontaneous unfolding and refolding events of native apomyoglobin. Above pH 5.0, dispersion is dominated by processes involving fluctuations of the F-helix region, which...
nmrlearner Journal club 0 05-31-2011 11:41 PM
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion.
Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion. Measurement of protein unfolding/refolding kinetics and structural characterization of hidden intermediates by NMR relaxation dispersion. Proc Natl Acad Sci U S A. 2011 May 11; Authors: Meinhold DW, Wright PE Detailed understanding of protein function and malfunction hinges on the ability to characterize transiently populated states and the transitions between them. Here, we use (15)N, , and (13)CO NMR R(2)...
nmrlearner Journal club 0 05-13-2011 02:40 PM
[NMR paper] High-pressure NMR spectroscopy for characterizing folding intermediates and denatured
High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins. Related Articles High-pressure NMR spectroscopy for characterizing folding intermediates and denatured states of proteins. Methods. 2004 Sep;34(1):133-43 Authors: Kamatari YO, Kitahara R, Yamada H, Yokoyama S, Akasaka K Extensive structural studies using high-pressure NMR spectroscopy have recently been carried out on proteins, which potentially contribute to our understanding of the mechanisms of protein folding. Pressure shifts the...
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion
Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Related Articles Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature. 2004 Jul 29;430(6999):586-90 Authors: Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE Many biochemical processes proceed through the formation of functionally significant intermediates. Although the identification and characterization of such species can provide vital clues about the mechanisms of the...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Use of selective Trp side chain labeling to characterize protein-protein and protein-
Use of selective Trp side chain labeling to characterize protein-protein and protein-ligand interactions by NMR spectroscopy. Related Articles Use of selective Trp side chain labeling to characterize protein-protein and protein-ligand interactions by NMR spectroscopy. J Am Chem Soc. 2003 Mar 12;125(10):2892-3 Authors: Rodriguez-Mias RA, Pellecchia M Recent studies on amino acid occurrence in protein binding sites suggest that only a reduced number of residues are responsible for most interaction energy in protein-protein and protein-ligand...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Spin labels as a tool to identify and characterize protein-ligand interactions by NMR
Spin labels as a tool to identify and characterize protein-ligand interactions by NMR spectroscopy. Related Articles Spin labels as a tool to identify and characterize protein-ligand interactions by NMR spectroscopy. Chembiochem. 2002 Mar 1;3(2-3):167-73 Authors: Jahnke W NMR spectroscopy based discovery and optimization of lead compounds for a given molecular target requires the development of methods with maximum sensitivity and robustness. It is shown here that organic nitroxide radicals ("spin labels") can be used to boost the sensitivity...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide ex
Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide exchange-two-dimensional NMR spectroscopy. Related Articles Investigation of ribonuclease T1 folding intermediates by hydrogen-deuterium amide exchange-two-dimensional NMR spectroscopy. Biochemistry. 1993 Jun 22;32(24):6152-6 Authors: Mullins LS, Pace CN, Raushel FM The rate of hydrogen bond formation at individual amino acid residues in ribonuclease T1 (RNase T1) has been investigated by the hydrogen-deuterium exchange-2D NMR (HDEx-2D NMR) technique (Udgaonkar...
nmrlearner Journal club 0 08-21-2010 11:53 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:46 AM.


Map