BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-17-2010, 11:06 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,780
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default An NMR study of ligand binding by maltodextrin binding protein.

An NMR study of ligand binding by maltodextrin binding protein.

Related Articles An NMR study of ligand binding by maltodextrin binding protein.

Biochem Cell Biol. 1998;76(2-3):189-97

Authors: Gehring K, Zhang X, Hall J, Nikaido H, Wemmer DE

Proton NMR spectra of maltodextrin binding protein from Escherichia coli were used to monitor conformational changes that accompany ligand binding. Chemical shift changes associated with the binding of different maltodextrins to maltodextrin binding protein were studied using one-dimensional difference spectra. Line-shape analysis of an isolated upfield methyl resonance was used to measure the kinetics of maltose binding at several temperatures. Maltose and linear maltodextrins caused similar changes to the upfield protein spectrum with no detectable differences between alpha and beta sugar anomers. Binding of a cyclic ligand, beta-cyclodextrin, caused smaller chemical shift changes than binding of linear maltodextrins. Two maltodextrin derivatives were also studied. Both maltohexaitol and maltohexanoic acid gave one-dimensional difference spectra that were intermediate between those of linear maltodextrins and beta-cyclodextrin. The methyl resonances at -1 and -0.35 ppm were assigned to leucine 160 on the basis of homonuclear COSY and TOCSY experiments and theoretical chemical shift calculations using the X-ray crystal structure of maltodextrin binding protein.

PMID: 9923688 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica.
Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica. Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica. Chem Biol Drug Des. 2011 Jan 14; Authors: Chandra K, Mustafi SM, Muthukumar S, Chary KV The study of protein-ligand interaction has been of a great interest in contemporary structural biology. The understanding of the nature...
nmrlearner Journal club 0 01-18-2011 10:22 PM
An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins.
An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins. An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins. Biochemistry. 2011 Jan 12; Authors: He Y, Estephan R, Yang X, Vela A, Wang H, Bernard C, Stark RE Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to...
nmrlearner Journal club 0 01-14-2011 12:05 PM
[NMR paper] Ligand-induced structural changes to maltodextrin-binding protein as studied by solut
Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy. Related Articles Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy. J Mol Biol. 2001 Jun 15;309(4):961-74 Authors: Evenäs J, Tugarinov V, Skrynnikov NR, Goto NK, Muhandiram R, Kay LE Solution NMR studies on the physiologically relevant ligand-free and maltotriose-bound states of maltodextrin-binding protein (MBP) are presented. Together with existing data on MBP in complex with...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein
Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. Biochemistry. 1997 Feb 25;36(8):2278-90 Authors: Hodsdon ME, Cistola DP The backbone dynamics of the liganded (holo) and unliganded (apo) forms of Escherichia...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein
Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Ligand binding alters the backbone mobility of intestinal fatty acid-binding protein as monitored by 15N NMR relaxation and 1H exchange. Biochemistry. 1997 Feb 25;36(8):2278-90 Authors: Hodsdon ME, Cistola DP The backbone dynamics of the liganded (holo) and unliganded (apo) forms of Escherichia...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] An investigation of the ligand-binding site of the glutamine-binding protein of Esche
An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR. Related Articles An investigation of the ligand-binding site of the glutamine-binding protein of Escherichia coli using rotational-echo double-resonance NMR. Biochemistry. 1994 Jul 26;33(29):8651-61 Authors: Hing AW, Tjandra N, Cottam PF, Schaefer J, Ho C Glutamine-binding protein (GlnBP) is an essential component of the glutamine transport system in Escherichia coli. Rotational-echo double-resonance...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[NMR paper] Tritium NMR spectroscopy of ligand binding to maltose-binding protein.
Tritium NMR spectroscopy of ligand binding to maltose-binding protein. Related Articles Tritium NMR spectroscopy of ligand binding to maltose-binding protein. Biochemistry. 1991 Jun 4;30(22):5524-31 Authors: Gehring K, Williams PG, Pelton JG, Morimoto H, Wemmer DE Tritium-labeled alpha- and beta-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR spectroscopy...
nmrlearner Journal club 0 08-21-2010 11:16 PM
Ligand-membrane protein binding by solid-state NMR
Selective Interface Detection: Mapping Binding Site Contacts in Membrane Proteins by NMR Spectroscopy Suzanne R. Kiihne, Alain F. L. Creemers, Willem J. de Grip, Petra H. M. Bovee-Geurts, Johan Lugtenburg, and Huub J. M. de Groot J. Am. Chem. Soc.; 2005; 127(16) pp 5734 - 5735 ABSTRACT: Intermolecular contact surfaces are important regions where specific interactions mediate biological function. We introduce a new magic angle spinning solid state NMR technique, dubbed "selective interface detection spectroscopy" (SIDY). In this technique, 13C-attached protons (1Hlig) are dephased by...
nmrlearner Journal club 0 05-19-2005 09:04 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:46 AM.


Map