Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A
Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A
Abstract Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli.
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli.
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli.
Mol Biol Rep. 2010 Dec 12;
Authors: Paramanik V, Thakur MK
Nuclear magnetic resonance (NMR) spectroscopy is a useful biophysical technique to study the ligand-protein interaction. In this report, we have used bacterially produced ER? and its domains for studying the functional analysis of ligand-protein interaction....
[NMR paper] NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus t
NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus thermophilus Hsp70 chaperone DnaK: implications for the allosteric mechanism.
Related Articles NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus thermophilus Hsp70 chaperone DnaK: implications for the allosteric mechanism.
J Biol Chem. 2004 Aug 6;279(32):33958-67
Authors: Revington M, Holder TM, Zuiderweg ER
We present an NMR investigation of the nucleotide-dependent conformational properties of a 44-kDa nucleotide binding...
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] 1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse
1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse lens.
Related Articles 1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse lens.
Biochim Biophys Acta. 2000 Mar 6;1474(1):23-30
Authors: Nakamura K, Jung YM, Era S, Sogami M, Ozaki Y, Takasaki A
In order to provide new insight into the molecular mechanism of perforating trauma-induced cataract formation in an 8-week-old ddY mouse lens, we performed an in situ investigation into changes in the water-protein and/or...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
[NMR paper] NMR study of Ni2+ binding to the H-N-H endonuclease domain of colicin E9.
NMR study of Ni2+ binding to the H-N-H endonuclease domain of colicin E9.
Related Articles NMR study of Ni2+ binding to the H-N-H endonuclease domain of colicin E9.
Protein Sci. 1999 Aug;8(8):1711-3
Authors: Hannan JP, Whittaker SB, Davy SL, Kühlmann UC, Pommer AJ, Hemmings AM, James R, Kleanthous C, Moore GR
Ni2+ affinity columns are widely used for protein purification, but they carry the risk that Ni2+ ions may bind to the protein, either adventitiously or at a physiologically important site. Dialysis against ethylenediaminetetraacetic acid...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] Chemical shift assignments and folding topology of the Ras-binding domain of human Ra
Chemical shift assignments and folding topology of the Ras-binding domain of human Raf-1 as determined by heteronuclear three-dimensional NMR spectroscopy.
Related Articles Chemical shift assignments and folding topology of the Ras-binding domain of human Raf-1 as determined by heteronuclear three-dimensional NMR spectroscopy.
Biochemistry. 1994 Jun 28;33(25):7745-52
Authors: Emerson SD, Waugh DS, Scheffler JE, Tsao KL, Prinzo KM, Fry DC
Raf-1 is a 74-kDa serine-threonine kinase which serves as the immediate downstream target of Ras in the...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] 7Li NMR relaxation study of Li+ binding in human erythrocytes.
7Li NMR relaxation study of Li+ binding in human erythrocytes.
Related Articles 7Li NMR relaxation study of Li+ binding in human erythrocytes.
Biochemistry. 1993 Dec 14;32(49):13490-8
Authors: Rong Q, Espanol M, Mota de Freitas D, Geraldes CF
We used 7Li NMR spin-lattice (T1) and spin-spin (T2) relaxation time measurements to investigate the binding of Li+ in human red blood cell (RBC) suspensions. In RBCs containing 1.4 mM Li+, the intracellular 7Li NMR T2 relaxation value (0.30 +/- 0.03 s) was much smaller than the corresponding T1 value...