BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-07-2012, 08:24 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR Study on the B–ZJunction Formation ofDNA Duplexes Induced by Z-DNA Binding Domain of Human ADAR1

NMR Study on the B–ZJunction Formation ofDNA Duplexes Induced by Z-DNA Binding Domain of Human ADAR1

Yeon-Mi Lee, Hee-Eun Kim, Chin-Ju Park, Ae-Ree Lee, Hee-Chul Ahn, Sung Jae Cho, Kwang-Ho Choi, Byong-Seok Choi and Joon-Hwa Lee



Journal of the American Chemical Society
DOI: 10.1021/ja211581b




Source: Journal of the American Chemical Society
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A
Zn-binding AZUL domain of human ubiquitin protein ligase Ube3A Abstract Ube3A (also referred to as E6AP for E6 Associated Protein) is a E3 ubiquitin-protein ligase implicated in the development of Angelman syndrome by controlling degradation of synaptic protein Arc and oncogenic papilloma virus infection by controlling degradation of p53. This article describe the solution NMR structure of the conserved N-terminal domain of human Ube3A (residues 24-87) that contains two residues (Cys44 and Arg62) found to be mutated in patients with Angelman syndrome. The structure of this domain...
nmrlearner Journal club 0 09-30-2011 08:01 PM
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli.
NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli. NMR analysis reveals 17?-estradiol induced conformational change in ER? ligand binding domain expressed in E. coli. Mol Biol Rep. 2010 Dec 12; Authors: Paramanik V, Thakur MK Nuclear magnetic resonance (NMR) spectroscopy is a useful biophysical technique to study the ligand-protein interaction. In this report, we have used bacterially produced ER? and its domains for studying the functional analysis of ligand-protein interaction....
nmrlearner Journal club 0 12-15-2010 12:03 PM
[NMR paper] Over-expression and purification of isotopically labeled recombinant ligand-binding domain of orphan nuclear receptor human B1-binding factor/human liver receptor homologue 1 for NMR studies.
Over-expression and purification of isotopically labeled recombinant ligand-binding domain of orphan nuclear receptor human B1-binding factor/human liver receptor homologue 1 for NMR studies. Related Articles Over-expression and purification of isotopically labeled recombinant ligand-binding domain of orphan nuclear receptor human B1-binding factor/human liver receptor homologue 1 for NMR studies. Protein Expr Purif. 2006 Jan;45(1):99-106 Authors: Chen X, Tong X, Xie Y, Wang Y, Ma J, Gao D, Wu H, Chen H The human hepatitis B virus enhancer II...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus t
NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus thermophilus Hsp70 chaperone DnaK: implications for the allosteric mechanism. Related Articles NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus thermophilus Hsp70 chaperone DnaK: implications for the allosteric mechanism. J Biol Chem. 2004 Aug 6;279(32):33958-67 Authors: Revington M, Holder TM, Zuiderweg ER We present an NMR investigation of the nucleotide-dependent conformational properties of a 44-kDa nucleotide binding...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] 1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse
1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse lens. Related Articles 1H-NMR and raman studies on perforating trauma-induced cataract formation in a mouse lens. Biochim Biophys Acta. 2000 Mar 6;1474(1):23-30 Authors: Nakamura K, Jung YM, Era S, Sogami M, Ozaki Y, Takasaki A In order to provide new insight into the molecular mechanism of perforating trauma-induced cataract formation in an 8-week-old ddY mouse lens, we performed an in situ investigation into changes in the water-protein and/or...
nmrlearner Journal club 0 11-18-2010 09:15 PM
[NMR paper] NMR study of Ni2+ binding to the H-N-H endonuclease domain of colicin E9.
NMR study of Ni2+ binding to the H-N-H endonuclease domain of colicin E9. Related Articles NMR study of Ni2+ binding to the H-N-H endonuclease domain of colicin E9. Protein Sci. 1999 Aug;8(8):1711-3 Authors: Hannan JP, Whittaker SB, Davy SL, Kühlmann UC, Pommer AJ, Hemmings AM, James R, Kleanthous C, Moore GR Ni2+ affinity columns are widely used for protein purification, but they carry the risk that Ni2+ ions may bind to the protein, either adventitiously or at a physiologically important site. Dialysis against ethylenediaminetetraacetic acid...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] Chemical shift assignments and folding topology of the Ras-binding domain of human Ra
Chemical shift assignments and folding topology of the Ras-binding domain of human Raf-1 as determined by heteronuclear three-dimensional NMR spectroscopy. Related Articles Chemical shift assignments and folding topology of the Ras-binding domain of human Raf-1 as determined by heteronuclear three-dimensional NMR spectroscopy. Biochemistry. 1994 Jun 28;33(25):7745-52 Authors: Emerson SD, Waugh DS, Scheffler JE, Tsao KL, Prinzo KM, Fry DC Raf-1 is a 74-kDa serine-threonine kinase which serves as the immediate downstream target of Ras in the...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] 7Li NMR relaxation study of Li+ binding in human erythrocytes.
7Li NMR relaxation study of Li+ binding in human erythrocytes. Related Articles 7Li NMR relaxation study of Li+ binding in human erythrocytes. Biochemistry. 1993 Dec 14;32(49):13490-8 Authors: Rong Q, Espanol M, Mota de Freitas D, Geraldes CF We used 7Li NMR spin-lattice (T1) and spin-spin (T2) relaxation time measurements to investigate the binding of Li+ in human red blood cell (RBC) suspensions. In RBCs containing 1.4 mM Li+, the intracellular 7Li NMR T2 relaxation value (0.30 +/- 0.03 s) was much smaller than the corresponding T1 value...
nmrlearner Journal club 0 08-22-2010 03:01 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:59 PM.


Map