Related ArticlesNMR studies of the phosphotransfer domain of the histidine kinase CheA from Escherichia coli: assignments, secondary structure, general fold, and backbone dynamics.
Multidimensional heteronuclear NMR techniques were applied to study the phosphotransfer domain, residues 1-134, of the histidine kinase CheA, from Escherichia coli, which contains the site of autophosphorylation, His48. Assignments of the backbone amide groups and side chain protons are nearly complete. Our studies show that this protein fragment consists of five alpha-helices (A-E) connected by turns. Analysis of NOE distance restraints provided by two-dimensional (2D) 1H-1H and three-dimensional (3D) 15N-edited NOESY spectra using model building and structure calculations indicates that the five helices form an antiparallel helix bundle with near-neighbor connectivity. The amino-terminal four helices are proposed to be arranged in a right-handed manner with helix E packing against helices C and D. From ideal hydrophobic helical packing and structure calculations, the site of autophosphorylation, His48, is nearly fully exposed to the solvent. We measured the NMR relaxation properties of the backbone 15N nuclei using inverse detected two-dimensional NMR spectroscopy. The protein backbone dynamics studies show that CheA1-134 is formed into a tight and compact structure with very limited flexibilities both in helices and turns. Structural implications of titration and phosphorylation experiments are briefly discussed.
The structure and dynamic properties of the complete histidine phosphotransfer domain of the chemotaxis specific histidine autokinase CheA from Thermotoga maritima
The structure and dynamic properties of the complete histidine phosphotransfer domain of the chemotaxis specific histidine autokinase CheA from Thermotoga maritima
Abstract The bacterial histidine autokinase CheA contains a histidine phosphotransfer (Hpt) domain that accepts a phosphate from the catalytic domain and donates the phosphate to either target response regulator protein, CheY or CheB. The Hpt domain forms a helix-bundle structure with a conserved four-helix bundle motif and a variable fifth helix. Observation of two nearly equally populated conformations in the crystal...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
[NMR paper] NMR backbone assignment of a protein kinase catalytic domain by a combination of seve
NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase.
Related Articles NMR backbone assignment of a protein kinase catalytic domain by a combination of several approaches: application to the catalytic subunit of cAMP-dependent protein kinase.
Chembiochem. 2004 Nov 5;5(11):1508-16
Authors: Langer T, Vogtherr M, Elshorst B, Betz M, Schieborr U, Saxena K, Schwalbe H
Protein phosphorylation is one of the most important mechanisms...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] NMR structure of the forkhead-associated domain from the Arabidopsis receptor kinase-
NMR structure of the forkhead-associated domain from the Arabidopsis receptor kinase-associated protein phosphatase.
Related Articles NMR structure of the forkhead-associated domain from the Arabidopsis receptor kinase-associated protein phosphatase.
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11261-6
Authors: Lee GI, Ding Z, Walker JC, Van Doren SR
Forkhead-associated (FHA) domains are phosphoprotein-binding modules found in diverse signaling proteins that bind partners phosphorylated on threonine or serine. Kinase-associated protein...
nmrlearner
Journal club
0
11-24-2010 09:16 PM
[NMR paper] A novel view of domain flexibility in E. coli adenylate kinase based on structural mo
A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling (15)N NMR relaxation.
Related Articles A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling (15)N NMR relaxation.
J Mol Biol. 2002 Jan 11;315(2):155-70
Authors: Tugarinov V, Shapiro YE, Liang Z, Freed JH, Meirovitch E
Adenylate kinase from Escherichia coli (AKeco), consisting of a single 23.6 kDa polypeptide chain folded into domains CORE, AMPbd and LID, catalyzes the reaction AMP+ATP-->2ADP. In the...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ.
NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ.
Related Articles NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ.
Nature. 1998 Nov 5;396(6706):88-92
Authors: Tanaka T, Saha SK, Tomomori C, Ishima R, Liu D, Tong KI, Park H, Dutta R, Qin L, Swindells MB, Yamazaki T, Ono AM, Kainosho M, Inouye M, Ikura M
Bacteria live in capricious environments, in which they must continuously sense external conditions in order to adjust their shape, motility and physiology. The histidine-aspartate...
nmrlearner
Journal club
0
11-17-2010 11:15 PM
[NMR paper] Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optic
Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy.
Related Articles Folding kinetics of the SH3 domain of PI3 kinase by real-time NMR combined with optical spectroscopy.
J Mol Biol. 1998 Feb 27;276(3):657-67
Authors: Guijarro JI, Morton CJ, Plaxco KW, Campbell ID, Dobson CM
The refolding kinetics of the chemically denatured SH3 domain of phosphatidylinositol 3'-kinase (PI3-SH3) have been monitored by real-time one-dimensional 1H NMR coupled with a variety of other biophysical techniques. These...
nmrlearner
Journal club
0
11-17-2010 11:06 PM
[NMR paper] Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NM
Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR.
Biochemistry. 1997 Jan 28;36(4):699-710
Authors: Zhou H, Dahlquist FW
Bacterial chemotaxis involves autophosphorylation of a histidine kinase and transfer of the phosphoryl group to response regulators to control flagellar rotation and receptor adaptation. The...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NM
Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR.
Biochemistry. 1997 Jan 28;36(4):699-710
Authors: Zhou H, Dahlquist FW
Bacterial chemotaxis involves autophosphorylation of a histidine kinase and transfer of the phosphoryl group to response regulators to control flagellar rotation and receptor adaptation. The...