BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 04:03 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR studies of the metal-loading kinetics and acid-base chemistry of DOTA and butylam

NMR studies of the metal-loading kinetics and acid-base chemistry of DOTA and butylamide-DOTA.

Related Articles NMR studies of the metal-loading kinetics and acid-base chemistry of DOTA and butylamide-DOTA.

Bioconjug Chem. 1999 May-Jun;10(3):454-63

Authors: Keire DA, Kobayashi M

The conjugation of a chelating agent to a protein via a covalent linkage has been previously reported to change the metal-binding characteristics of the chelator. A fundamental understanding of these binding changes would enable design of a new generation of metal-chelating agents for biological applications. To assess the effect of conjugation on the commonly used chelating agent 1 4,7, 10-tetraaazacyclododecane-N,N',N'',N'''-tetraaacetic acid (DOTA), we synthesized a model protein conjugate, 1,4, 7-tris(carboxymethyl)-10-(butylaminocarboxymethyl)-1,4,7, 10-tetraaazacyclododecane (BD) and explored the metal-binding characteristics via NMR. The extent of ionization of the carboxylic acid groups and the two protonated macrocycle nitrogens of DOTA and BD were determined as a function of pH by chemical shift changes in proximal carbon-bonded protons. In addition to the expected sensitivity of the chemical shifts to titration of proximate acidic groups, BD resonances from carbon-bonded protons 10-17 bonds distant from the deprotonation site also shifted significantly, indicating the presence of conformational changes. Furthermore, increased shielding of the amide and alkyl proton signals upon deprotonation of the carboxylic acid groups indicates the presence of pH-dependent hydrogen-bonded BD isoforms. On the basis of these NMR data, we propose new structures for the doubly protonated forms of DOTA and BD. To measure metal loading, the yttrium-loading rates (type I to type II) of DOTA and BD were determined by following the intensity of type I and type II proton signals as a function of time. The yttrium-loading rates of BD are approximately one-half those of DOTA at pHs between 4.6 and 6.5 and 37 degrees C. The loading rates measured as a function of pH indicate that while both the doubly protonated and singly protonated forms of DOTA are reactive to metal loading, only the singly protonated form of BD is reactive.

PMID: 10346878 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] 13C NMR relaxation studies of RNA base and ribose nuclei reveal a complex pattern of
13C NMR relaxation studies of RNA base and ribose nuclei reveal a complex pattern of motions in the RNA binding site for human U1A protein. Related Articles 13C NMR relaxation studies of RNA base and ribose nuclei reveal a complex pattern of motions in the RNA binding site for human U1A protein. J Mol Biol. 2005 Jun 17;349(4):699-715 Authors: Shajani Z, Varani G The widespread importance of induced fit and order-disorder transition in RNA recognition by proteins and small molecules makes it imperative that RNA motional properties are...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] NMR studies on Cu(II)-peptide complexes: exchange kinetics and determination of struc
NMR studies on Cu(II)-peptide complexes: exchange kinetics and determination of structures in solution. Related Articles NMR studies on Cu(II)-peptide complexes: exchange kinetics and determination of structures in solution. Mol Biosyst. 2005 May;1(1):79-84 Authors: Gaggelli E, Kozlowski H, Valensin D, Valensin G The interaction of copper(II) with histidine containing peptides has recently acquired renewed interest following the established link between abnormal protein behaviour in neurodegenerative processes and unpaired copper homeostasis....
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Tautomerism, acid-base equilibria, and H-bonding of the six histidines in subtilisin
Tautomerism, acid-base equilibria, and H-bonding of the six histidines in subtilisin BPN' by NMR. Related Articles Tautomerism, acid-base equilibria, and H-bonding of the six histidines in subtilisin BPN' by NMR. Protein Sci. 2003 Apr;12(4):794-810 Authors: Day RM, Thalhauser CJ, Sudmeier JL, Vincent MP, Torchilin EV, Sanford DG, Bachovchin CW, Bachovchin WW We have determined by (15)N, (1)H, and (13)C NMR, the chemical behavior of the six histidines in subtilisin BPN' and their PMSF and peptide boronic acid complexes in aqueous solution as a...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] An NMR method for studying the kinetics of metal exchange in biomolecular systems.
An NMR method for studying the kinetics of metal exchange in biomolecular systems. Related Articles An NMR method for studying the kinetics of metal exchange in biomolecular systems. J Biomol NMR. 2002 Aug;23(4):303-9 Authors: Barbieri R, Hore PJ, Luchina C, Pierattelli R The kinetics of lanthanide (III) exchange for calcium(II) in the C-terminal EF-hand of the protein calbindin D9k have been studied by one-dimensional (1D) stopped-flow NMR. By choosing a paramagnetic lanthanide (Ce3+), kinetics in the sub-second range can be easily measured....
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Metal ion binding to calmodulin: NMR and fluorescence studies.
Metal ion binding to calmodulin: NMR and fluorescence studies. Related Articles Metal ion binding to calmodulin: NMR and fluorescence studies. Biometals. 1998 Sep;11(3):213-22 Authors: Ouyang H, Vogel HJ Calmodulin is an important second messenger protein which is involved in a large variety of cellular pathways. Calmodulin is sensitive to fluctuations in the intracellular Ca2+ levels and is activated by the binding of four Ca2+ ions. In spite of the important role it plays in signal transduction pathways, it shows a surprisingly broad...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] NMR spectroscopic studies of I = 1/2 metal ions in biological systems.
NMR spectroscopic studies of I = 1/2 metal ions in biological systems. Related Articles NMR spectroscopic studies of I = 1/2 metal ions in biological systems. Biochem Cell Biol. 1998;76(2-3):223-34 Authors: Oz G, Pountney DL, Armitage IM This article reviews the use of nuclear magnetic resonance methods of spin 1/2 metal nuclei to probe the metal binding site(s) in a variety of metalloproteins. The majority of the studies have involved native Zn(II) and Ca(II) metalloproteins where there has been isostructural substitution of these metal ions...
nmrlearner Journal club 0 11-17-2010 11:06 PM
[NMR paper] The pKa of the general acid/base carboxyl group of a glycosidase cycles during cataly
The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of bacillus circulans xylanase. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of bacillus circulans xylanase. Biochemistry. 1996 Aug 6;35(31):9958-66 Authors: McIntosh LP, Hand G, Johnson PE, Joshi MD, Körner M, Plesniak LA, Ziser L, Wakarchuk WW, Withers SG The 20 kDa...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] Structure of the metal-free gamma-carboxyglutamic acid-rich membrane binding region o
Structure of the metal-free gamma-carboxyglutamic acid-rich membrane binding region of factor IX by two-dimensional NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_full_free.gif Related Articles Structure of the metal-free gamma-carboxyglutamic acid-rich membrane binding region of factor IX by two-dimensional NMR spectroscopy. J Biol Chem. 1995 Apr 7;270(14):7980-7 Authors: Freedman SJ, Furie BC, Furie B, Baleja JD The gamma-carboxyglutamic acid-rich...
nmrlearner Journal club 0 08-22-2010 03:41 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:57 AM.


Map