BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 11:45 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR studies of interactions between inhibitors and porcine pancreatic phospholipase A

NMR studies of interactions between inhibitors and porcine pancreatic phospholipase A2.

Related Articles NMR studies of interactions between inhibitors and porcine pancreatic phospholipase A2.

Biochimie. 1992 Sep-Oct;74(9-10):859-66

Authors: Peters AR, Dekker N, van den Berg L, Boelens R, Slotboom AJ, de Haas GH, Kaptein R

Two-dimensional NMR studies were performed on the complexes of porcine pancreatic phospholipase A2, bound to a micellar lipid-water interface of fully deuterated dodecylphosphocholine, with competitive inhibitors derived from the following general structure: [formula: see text] X and Y are alkyl chains with various 'reporter groups'. The interactions between the inhibitor and the enzyme were localized by comparison of 2-D nuclear Overhauser effect spectra using protonated and selectively deuterated inhibitors, and inhibitors with groups having easily identifiable chemical shifts. These experiments led us to the following conclusions for the phospholipase A2/inhibitor/micelle complex: i) the His48 C2 ring proton is in close proximity to both the amide proton and the methylene protons at the sn-1 position of the glycerol skeleton of the inhibitor, ii) the acyl chain of the inhibitor at the sn-2 position makes hydrophobic contacts near Phe5, Ile9, Phe22 and Phe106; iii) no interactions between the acyl chain at the sn-1 position and the protein could be identified. Comparison of our results on the enzyme/inhibitor/micelle ternary complex with the crystal structure of the enzyme-inhibitor complex shows that the mode of inhibitor binding is similar. However, in several cases we found indications that the hydrophobic chains of the inhibitors can have multiple conformations.

PMID: 1467344 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR thesis] NMR Studies of Protein-DNA Interactions : Determinations of DNA Structures Recognized by Bin Recombinase and Studies of Their Roles in Protein Binding Interactions
NMR Studies of Protein-DNA Interactions : Determinations of DNA Structures Recognized by Bin Recombinase and Studies of Their Roles in Protein Binding Interactions Sun, Yun (1992) NMR Studies of Protein-DNA Interactions : Determinations of DNA Structures Recognized by Bin Recombinase and Studies of Their Roles in Protein Binding Interactions. Dissertation (Ph.D.), California Institute of Technology. http://resolver.caltech.edu/CaltechTHESIS:09132011-160134197 More...
nmrlearner NMR theses 0 09-16-2011 10:02 PM
Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions.
Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions. Exploring NMR ensembles of calcium binding proteins: perspectives to design inhibitors of protein-protein interactions. BMC Struct Biol. 2011 May 12;11(1):24 Authors: Isvoran A, Badel A, Craescu CT, Miron S, Miteva MA ABSTRACT: BACKGROUND: Disrupting protein-protein interactions by small organic molecules is nowadays a promising strategy employed to block protein targets involved in different pathologies. However, structural...
nmrlearner Journal club 0 05-17-2011 06:21 PM
[NMR paper] NMR studies of novel inhibitors bound to farnesyl-protein transferase.
NMR studies of novel inhibitors bound to farnesyl-protein transferase. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles NMR studies of novel inhibitors bound to farnesyl-protein transferase. Protein Sci. 1995 Apr;4(4):681-8 Authors: Koblan KS, Culberson JC, Desolms SJ, Giuliani EA, Mosser SD, Omer CA, Pitzenberger SM, Bogusky...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] Solution structure of porcine pancreatic procolipase as determined from 1H homonuclea
Solution structure of porcine pancreatic procolipase as determined from 1H homonuclear two-dimensional and three-dimensional NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Solution structure of porcine pancreatic procolipase as determined from 1H homonuclear two-dimensional and three-dimensional NMR. Eur J Biochem. 1995 Feb 1;227(3):663-72 Authors: Breg JN, Sarda L, Cozzone PJ, Rugani N, Boelens R, Kaptein R Procolipase is...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] NMR studies of phospholipase C hydrolysis of phosphatidylcholine in model membranes.
NMR studies of phospholipase C hydrolysis of phosphatidylcholine in model membranes. Related Articles NMR studies of phospholipase C hydrolysis of phosphatidylcholine in model membranes. J Biol Chem. 1993 Feb 5;268(4):2431-4 Authors: Bhamidipati SP, Hamilton JA Hydrolysis of phospholipids in biological membranes by phospholipase C (PLC) produces an important second messenger molecule, 1,2-diacylglycerol (DAG), that is essential for the activation of protein kinase C (PKC). While the effects of DAG on model membranes have been investigated...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] 1H NMR-based determination of the secondary structure of porcine pancreatic spasmolyt
1H NMR-based determination of the secondary structure of porcine pancreatic spasmolytic polypeptide: one of a new family of "trefoil" motif containing cell growth factors. Related Articles 1H NMR-based determination of the secondary structure of porcine pancreatic spasmolytic polypeptide: one of a new family of "trefoil" motif containing cell growth factors. Biochemistry. 1992 Feb 25;31(7):1998-2004 Authors: Carr MD Two-dimensional 1H NMR spectroscopy has been used to obtain comprehensive sequence-specific resonance assignments for the...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] Structural characterization of the interactions of optimized product inhibitors with
Structural characterization of the interactions of optimized product inhibitors with the N-terminal proteinase domain of the hepatitis C virus (HCV) NS3 protein by NMR and modelling studies. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Structural characterization of the interactions of optimized product inhibitors with the N-terminal proteinase domain of the hepatitis C virus (HCV) NS3 protein by NMR and modelling studies. J Mol Biol. 1999 Jun 4;289(2):385-96 Authors: Cicero...
nmrlearner Journal club 0 08-21-2010 04:03 PM
[NMR paper] NMR studies of Fusarium solani pisi cutinase in complex with phosphonate inhibitors.
NMR studies of Fusarium solani pisi cutinase in complex with phosphonate inhibitors. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR studies of Fusarium solani pisi cutinase in complex with phosphonate inhibitors. Biochemistry. 1999 May 11;38(19):5982-94 Authors: Prompers JJ, van Noorloos B, Mannesse ML, Groenewegen A, Egmond MR, Verheij HM, Hilbers CW, Pepermans HA The backbone dynamics of Fusarium solani pisi cutinase in complex with a phosphonate inhibitor has been studied by a...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:14 AM.


Map