BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-22-2010, 06:02 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR Studies on Domain Diffusion and Alignment in Modular GB1 Repeats.

NMR Studies on Domain Diffusion and Alignment in Modular GB1 Repeats.

Related Articles NMR Studies on Domain Diffusion and Alignment in Modular GB1 Repeats.

Biophys J. 2010 Oct 20;99(8):2636-46

Authors: Walsh JD, Meier K, Ishima R, Gronenborn AM

Modular proteins contain individual domains that are often connected by flexible, unstructured linkers. Using a model system based on the GB1 domain, we constructed tandem repeat proteins and investigated the rotational diffusion and long-range angular ordering behavior of individual domains by measuring NMR relaxation parameters and residual dipolar couplings. Although they display almost identical protein-solvent interfaces, each domain exhibits distinct rotational diffusion and alignment properties. The diffusion tensor anisotropy of the N-terminal domain (NTD) is D(?)/D(?) = 1.5-1.6, similar to that of single-GB1 domains (D(?)/D(?) = 1.6-1.7), whereas the value for the C-terminal domain (CTD) is D(?)/D(?) = 2.0-2.2. In addition, the two domains have different rotational correlation times. These effects are observed for linkers of three to 24 residues, irrespective of linker length. The NTD and CTD also differ in their degree of magnetic alignment, even with a flexible linker of 18 residues, exhibiting D(a) values of 7.7 Hz and 9.7 Hz, respectively. Our results suggest that diffusion differences and long-range influences may persist in modular protein systems, even for systems that have highly flexible linkers and exhibit no domain-domain or domain-linker interactions.

PMID: 20959105 [PubMed - in process]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media?
Domain cooperativity in multidomain proteins: what can we learn from molecular alignment in anisotropic media? Abstract Many proteins have modular design with multiple globular domains connected via flexible linkers. As a simple model of such system, we study a tandem construct consisting of two identical SH3 domains and a variable-length Gly/Ser linker. When the linker is short, this construct represents a dumbbell-shaped molecule with limited amount of domainβ??domain mobility. Due to its elongated shape, this molecule efficiently aligns in steric alignment media. As the length of...
nmrlearner Journal club 0 09-30-2011 08:01 PM
[NMR analysis blog] Alignment of NMR spectra – Part IV: Advanced Alignment
Alignment of NMR spectra – Part IV: Advanced Alignment Previous posts on this series: Alignment of NMR spectra – Part I: The problem Alignment of NMR spectra – Part II: Binning / Bucketing Alignment of NMR spectra – Part III: Global Alignment As I mentioned in my previous post, simple alignment based on shifting or referencing the whole spectrum is not enough in cases where there are different local chemical shift fluctuations. Resorting back to the synthetic data set used in the previous posts, let me introduce a semi-automatic method designed specifically to align spectra having...
nmrlearner News from NMR blogs 0 02-07-2011 07:53 PM
[NMR analysis blog] Alignment of NMR spectra – Part III: Global Alignment
Alignment of NMR spectra – Part III: Global Alignment Previous posts on this series: Alignment of NMR spectra – Part I: The problem Alignment of NMR spectra – Part II: Binning / Bucketing We have seen that binning helps in minimizing, for example, the effect of pH-induced fluctuations in chemical shift so that, in the field of NMR-based metabonomics studies, ensuring that signals for a given metabolite appear at the same location in all spectra. One evident disadvantage of binning is that it greatly reduces the spectral resolution (e.g. in a 500 MHz instrument, a typical 64 Kb...
nmrlearner News from NMR blogs 0 02-03-2011 06:51 PM
[NMR paper] NMR relaxation and water self-diffusion studies in whey protein solutions and gels.
NMR relaxation and water self-diffusion studies in whey protein solutions and gels. Related Articles NMR relaxation and water self-diffusion studies in whey protein solutions and gels. J Agric Food Chem. 2005 Aug 24;53(17):6784-90 Authors: Colsenet R, Mariette F, Cambert M The changes in water proton transverse relaxation behavior induced by aggregation of whey proteins are explained in terms of the simple molecular processes of diffusion and chemical exchange. The water self-diffusion coefficient was measured in whey protein solutions and...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR.
Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR. Related Articles Solution structure of the peptidoglycan binding domain of Bacillus subtilis cell wall lytic enzyme CwlC: characterization of the sporulation-related repeats by NMR. Biochemistry. 2005 Aug 2;44(30):10153-63 Authors: Mishima M, Shida T, Yabuki K, Kato K, Sekiguchi J, Kojima C Bacillus subtilis CwlC is a cell wall lytic N-acetylmuramoyl-l-alanine amidase that plays an...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of
15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores. Related Articles 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores. J Magn Reson. 2005 Apr;173(2):322-7 Authors: Chekmenev EY, Hu J, Gor'kov PL, Brey WW, Cross TA, Ruuge A, Smirnov AI This communication reports the first...
nmrlearner Journal club 0 11-25-2010 08:21 PM
[NMR paper] NMR studies of modular protein structures and their interactions.
NMR studies of modular protein structures and their interactions. Related Articles NMR studies of modular protein structures and their interactions. Chem Rev. 2004 Aug;104(8):3557-66 Authors: Pickford AR, Campbell ID
nmrlearner Journal club 0 11-24-2010 10:01 PM
[NMR paper] NMR studies of model peptides of PHGGGWGQ repeats within the N-terminus of prion prot
NMR studies of model peptides of PHGGGWGQ repeats within the N-terminus of prion proteins: a loop conformation with histidine and tryptophan in close proximity. Related Articles NMR studies of model peptides of PHGGGWGQ repeats within the N-terminus of prion proteins: a loop conformation with histidine and tryptophan in close proximity. J Biochem. 2000 Aug;128(2):271-81 Authors: Yoshida H, Matsushima N, Kumaki Y, Nakata M, Hikichi K The N-terminal region of the prion protein from human and mouse contains five tandem repeats with the consensus...
nmrlearner Journal club 0 11-19-2010 08:29 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:17 PM.


Map