To overcome the difficulty of characterizing the structures of the extracellular loops (eLPs) of G protein-coupled receptors (GPCRs) other than rhodopsin, we have explored a strategy to generate a three-dimensional structural model for a GPCR, the thromboxane A(2) receptor. This three-dimensional structure was completed by the assembly of the NMR structures of the computation-guided constrained peptides that mimicked the extracellular loops and connected to the conserved seven transmembrane domains. The NMR structure-based model reveals the structural features of the eLPs, in which the second extracellular loop (eLP(2)) and the disulfide bond between the first extracellular loop (eLP(1)) and eLP(2) play a major role in forming the ligand recognition pocket. The eLP(2) conformation is dynamic and regulated by the oxidation and reduction of the disulfide bond, which affects ligand docking in the initial recognition. The reduced form of the thromboxane A(2) receptor experienced a decrease in ligand binding activity due to the rearrangement of the eLP(2) conformation. The ligand-bound receptor was, however, resistant to the reduction inactivation because the ligand covered the disulfide bond and stabilized the eLP(2) conformation. This molecular mechanism of ligand recognition is the first that may be applied to other prostanoid receptors and other GPCRs.
[NMR paper] CORCEMA refinement of the bound ligand conformation within the protein binding pocket
CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities.
Related Articles CORCEMA refinement of the bound ligand conformation within the protein binding pocket in reversibly forming weak complexes using STD-NMR intensities.
J Magn Reson. 2004 May;168(1):36-45
Authors: Jayalakshmi V, Rama Krishna N
We describe an intensity-restrained optimization procedure for refining approximate structures of ligands within the protein binding pockets using STD-NMR...
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] Design of a functional protein for molecular recognition: specificity of ligand bindi
Design of a functional protein for molecular recognition: specificity of ligand binding in a metal-assembled protein cavity probed by 19f NMR.
Related Articles Design of a functional protein for molecular recognition: specificity of ligand binding in a metal-assembled protein cavity probed by 19f NMR.
J Am Chem Soc. 2004 Apr 7;126(13):4192-8
Authors: Doerr AJ, Case MA, Pelczer I, McLendon GL
A metal-assembled homotrimeric coiled coil based on the GCN4-p1 sequence has been designed that noncovalently binds hexafluorobenzene and other similar...
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] Epitope mapping of ligand-receptor interactions by diffusion NMR.
Epitope mapping of ligand-receptor interactions by diffusion NMR.
Related Articles Epitope mapping of ligand-receptor interactions by diffusion NMR.
J Am Chem Soc. 2002 Aug 28;124(34):9984-5
Authors: Yan J, Kline AD, Mo H, Zartler ER, Shapiro MJ
A novel method based on diffusion NMR for the epitope mapping of ligand binding is presented. The intermolecular NOE builds up during a long diffusion period and creates a deviation from the linearity. The ligand proton nearest the protein generates the strongest NOE from protein during the diffusion...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] Probing the agonist binding pocket in the nicotinic acetylcholine receptor: a high-re
Probing the agonist binding pocket in the nicotinic acetylcholine receptor: a high-resolution solid-state NMR approach.
Related Articles Probing the agonist binding pocket in the nicotinic acetylcholine receptor: a high-resolution solid-state NMR approach.
Biochemistry. 1998 Jul 28;37(30):10854-9
Authors: Williamson PT, Gröbner G, Spooner PJ, Miller KW, Watts A
Acetylcholine, the agonist for the nicotinic acetylcholine receptor, has been observed directly when bound specifically to its binding site in the fully functional receptor-enriched...
nmrlearner
Journal club
0
11-17-2010 11:15 PM
[NMR paper] Dynamic NMR studies of ligand-receptor interactions: design and analysis of a rapidly
Dynamic NMR studies of ligand-receptor interactions: design and analysis of a rapidly exchanging complex of FKBP-12/FK506 with a 24 kDa calcineurin fragment.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Dynamic NMR studies of ligand-receptor interactions: design and analysis of a rapidly exchanging complex of FKBP-12/FK506 with a 24 kDa calcineurin...
nmrlearner
Journal club
0
08-22-2010 02:20 PM
[NMR paper] 1H NMR studies of DNA recognition by the glucocorticoid receptor: complex of the DNA
1H NMR studies of DNA recognition by the glucocorticoid receptor: complex of the DNA binding domain with a half-site response element.
Related Articles 1H NMR studies of DNA recognition by the glucocorticoid receptor: complex of the DNA binding domain with a half-site response element.
Biochemistry. 1991 Dec 17;30(50):11620-4
Authors: Remerowski ML, Kellenbach E, Boelens R, van der Marel GA, van Boom JH, Maler BA, Yamamoto KR, Kaptein R
The complex of the rat glucocorticoid receptor (GR) DNA binding domain (DBD) and half-site sequence of the...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[NMR paper] 1H NMR studies of DNA recognition by the glucocorticoid receptor: complex of the DNA
1H NMR studies of DNA recognition by the glucocorticoid receptor: complex of the DNA binding domain with a half-site response element.
Related Articles 1H NMR studies of DNA recognition by the glucocorticoid receptor: complex of the DNA binding domain with a half-site response element.
Biochemistry. 1991 Dec 17;30(50):11620-4
Authors: Remerowski ML, Kellenbach E, Boelens R, van der Marel GA, van Boom JH, Maler BA, Yamamoto KR, Kaptein R
The complex of the rat glucocorticoid receptor (GR) DNA binding domain (DBD) and half-site sequence of the...