BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-18-2010, 08:31 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR structure and metal interactions of the CopZ copper chaperone.

NMR structure and metal interactions of the CopZ copper chaperone.

Related Articles NMR structure and metal interactions of the CopZ copper chaperone.

J Biol Chem. 1999 Aug 6;274(32):22597-603

Authors: Wimmer R, Herrmann T, Solioz M, Wüthrich K

A recently discovered family of proteins that function as copper chaperones route copper to proteins that either require it for their function or are involved in its transport. In Enterococcus hirae the copper chaperone function is performed by the 8-kDa protein CopZ. This paper describes the NMR structure of apo-CopZ, obtained using uniformly (15)N-labeled CopZ overexpressed in Escherichia coli and NMR studies of the impact of Cu(I) binding on the CopZ structure. The protein has a betaalphabetabetaalphabeta fold, where the four beta-strands form an antiparallel twisted beta-sheet, and the two helices are located on the same side of the beta-sheet. A sequence motif GMXCXXC in the loop between the first beta-strand and the first alpha-helix contains the primary ligands, which bind copper(I). Binding of copper(I) caused major structural changes in this molecular region, as manifested by the fact that most NMR signals of the loop and the N-terminal part of the first helix were broadened beyond detection. This effect was strictly localized, because the remainder of the apo-CopZ structure was maintained after addition of Cu(I). NMR relaxation data showed a decreased correlation time of overall molecular tumbling for Cu(I)-CopZ when compared with apo-CopZ, indicating aggregation of Cu(I)-CopZ. The structure of CopZ is the first three-dimensional structure of a cupro-protein for which the metal ion is an exchangeable substrate rather than an integral part of the structure. Implications of the present structural work for the in vivo function of CopZ are discussed, whereby it is of special interest that the distribution of charged residues on the CopZ surface is highly uneven and suggests preferred recognition sites for other proteins that might be involved in copper transfer.

PMID: 10428839 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Probing the Interaction of Cisplatin with the Human Copper Chaperone Atox1 by Solution and In-Cell NMR Spectroscopy
Probing the Interaction of Cisplatin with the Human Copper Chaperone Atox1 by Solution and In-Cell NMR Spectroscopy Fabio Arnesano, Lucia Banci, Ivano Bertini, Isabella C. Felli, Maurizio Losacco and Giovanni Natile http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja207346p/aop/images/medium/ja-2011-07346p_0003.gif Journal of the American Chemical Society DOI: 10.1021/ja207346p http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/9nWkAzWuq20
nmrlearner Journal club 0 10-24-2011 11:06 PM
[NMR paper] A NMR study of the interaction of a three-domain construct of ATP7A with copper(I) and copper(I)-HAH1: the interplay of domains.
A NMR study of the interaction of a three-domain construct of ATP7A with copper(I) and copper(I)-HAH1: the interplay of domains. Related Articles A NMR study of the interaction of a three-domain construct of ATP7A with copper(I) and copper(I)-HAH1: the interplay of domains. J Biol Chem. 2005 Nov 18;280(46):38259-63 Authors: Banci L, Bertini I, Cantini F, Chasapis CT, Hadjiliadis N, Rosato A ATP7A is a P-type ATPase involved in copper(I) homeostasis in humans. It possesses a long N-terminal tail protruding into the cytosol and containing six...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] An NMR study of the interaction between the human copper(I) chaperone and the second
An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein. Related Articles An NMR study of the interaction between the human copper(I) chaperone and the second and fifth metal-binding domains of the Menkes protein. FEBS J. 2005 Feb;272(3):865-71 Authors: Banci L, Bertini I, Ciofi-Baffoni S, Chasapis CT, Hadjiliadis N, Rosato A The interaction between the human copper(I) chaperone, HAH1, and one of its two physiological partners, the Menkes disease protein...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR.
Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR. Related Articles Folding and domain-domain interactions of the chaperone PapD measured by 19F NMR. Biochemistry. 2004 Nov 2;43(43):13775-86 Authors: Bann JG, Frieden C The folding of the two-domain bacterial chaperone PapD has been studied to develop an understanding of the relationship between individual domain folding and the formation of domain-domain interactions. PapD contains six phenylalanine residues, four in the N-terminal domain and two in the...
nmrlearner Journal club 0 11-24-2010 10:03 PM
[NMR paper] X-ray absorption and NMR spectroscopic studies of CopZ, a copper chaperone in Bacillu
X-ray absorption and NMR spectroscopic studies of CopZ, a copper chaperone in Bacillus subtilis: the coordination properties of the copper ion. Related Articles X-ray absorption and NMR spectroscopic studies of CopZ, a copper chaperone in Bacillus subtilis: the coordination properties of the copper ion. Biochemistry. 2003 Mar 4;42(8):2467-74 Authors: Banci L, Bertini I, Del Conte R, Mangani S, Meyer-Klaucke W XAS studies have been performed, under various experimental conditions, on a copper(I)-transporting protein, CopZ, of Bacillus subtilis....
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR stu
Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin. Related Articles Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin. J Biol Inorg Chem. 2003 Jan;8(1-2):75-82 Authors: Fernández CO, Niizeki T, Kohzuma T, Vila AJ Pseudoazurin is an electron transfer copper protein, a member of the cupredoxin family. The protein is frequently found in denitrifying bacteria, where it is the electron donor of nitrite reductase. The copper at...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Metal-ligand interplay in blue copper proteins studied by 1H NMR spectroscopy: Cu(II)
Metal-ligand interplay in blue copper proteins studied by 1H NMR spectroscopy: Cu(II)-pseudoazurin and Cu(II)-rusticyanin. Related Articles Metal-ligand interplay in blue copper proteins studied by 1H NMR spectroscopy: Cu(II)-pseudoazurin and Cu(II)-rusticyanin. J Am Chem Soc. 2002 Nov 20;124(46):13698-708 Authors: Donaire A, Jiménez B, Fernández CO, Pierattelli R, Niizeki T, Moratal JM, Hall JF, Kohzuma T, Hasnain SS, Vila AJ The blue copper proteins (BCPs), pseudoazurin from Achromobacter cycloclastes and rusticyanin from Thiobacillus...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Pilus chaperone FimC-adhesin FimH interactions mapped by TROSY-NMR.
Pilus chaperone FimC-adhesin FimH interactions mapped by TROSY-NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_nsb.gif Related Articles Pilus chaperone FimC-adhesin FimH interactions mapped by TROSY-NMR. Nat Struct Biol. 1999 Apr;6(4):336-9 Authors: Pellecchia M, Sebbel P, Hermanns U, Wüthrich K, Glockshuber R The 23 kDa two-domain periplasmic chaperone FimC from Escherichia coli is required for the assembly of type-1 pili, which are filamentous, highly oligomeric protein complexes anchored to the outer...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:20 PM.


Map