BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2010, 08:44 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking t

NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains.

Related Articles NMR structure of the hRap1 Myb motif reveals a canonical three-helix bundle lacking the positive surface charge typical of Myb DNA-binding domains.

J Mol Biol. 2001 Sep 7;312(1):167-75

Authors: Hanaoka S, Nagadoi A, Yoshimura S, Aimoto S, Li B, de Lange T, Nishimura Y

Mammalian telomeres are composed of long tandem arrays of double-stranded telomeric TTAGGG repeats associated with the telomeric DNA-binding proteins, TRF1 and TRF2. TRF1 and TRF2 contain a similar C-terminal Myb domain that mediates sequence-specific binding to telomeric DNA. In the budding yeast, telomeric DNA is associated with scRap1p, which has a central DNA-binding domain that contains two structurally related Myb domains connected by a long linker, an N-terminal BRCT domain, and a C-terminal RCT domain. Recently, the human ortholog of scRap1p (hRap1) was identified and shown to contain a BRCT domain and an RCT domain similar to scRap1p. However, hRap1 contained only one recognizable Myb motif in the center of the protein. Furthermore, while scRap1p binds telomeric DNA directly, hRap1 has no DNA-binding ability. Instead, hRap1 is tethered to telomeres by TRF2. Here, we have determined the solution structure of the Myb domain of hRap1 by NMR. It contains three helices maintained by a hydrophobic core. The architecture of the hRap1 Myb domain is very close to that of each of the Myb domains from TRF1, scRap1p and c-Myb. However, the electrostatic potential surface of the hRap1 Myb domain is distinguished from that of the other Myb domains. Each of the minimal DNA-binding domains, containing one Myb domain in TRF1 and two Myb domains in scRap1p and c-Myb, exhibits a positively charged broad surface that contacts closely the negatively charged backbone of DNA. By contrast, the hRap1 Myb domain shows no distinct positive surface, explaining its lack of DNA-binding activity. The hRap1 Myb domain may be a member of a second class of Myb motifs that lacks DNA-binding activity but may interact instead with other proteins. Other possible members of this class are the c-Myb R1 Myb domain and the Myb domains of ADA2 and Adf1. Thus, while the folds of all Myb domains resemble each other closely, the function of each Myb domain depends on the amino acid residues that are located on the surface of each protein.

PMID: 11545594 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Engineering of a bis-chelator motif into a protein ?-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy.
Engineering of a bis-chelator motif into a protein ?-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy. Engineering of a bis-chelator motif into a protein ?-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy. Chem Commun (Camb). 2011 May 27; Authors: Swarbrick JD, Ung P, Su XC, Maleckis A, Chhabra S, Huber T, Otting G, Graham B Attachment of two nitrilotriacetic acid-based ligands to a protein ?-helix in an i, i + 4 configuration produces an octadentate chelating motif that is able to bind paramagnetic...
nmrlearner Journal club 0 05-28-2011 06:50 PM
[NMR paper] Redesign of a four-helix bundle protein by phage display coupled with proteolysis and
Redesign of a four-helix bundle protein by phage display coupled with proteolysis and structural characterization by NMR and X-ray crystallography. Related Articles Redesign of a four-helix bundle protein by phage display coupled with proteolysis and structural characterization by NMR and X-ray crystallography. J Mol Biol. 2002 Oct 18;323(2):253-62 Authors: Chu R, Takei J, Knowlton JR, Andrykovitch M, Pei W, Kajava AV, Steinbach PJ, Ji X, Bai Y To test whether it is practical to use phage display coupled with proteolysis for protein design, we...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Dynamics of a de novo designed three-helix bundle protein studied by 15N, 13C, and 2H
Dynamics of a de novo designed three-helix bundle protein studied by 15N, 13C, and 2H NMR relaxation methods. Related Articles Dynamics of a de novo designed three-helix bundle protein studied by 15N, 13C, and 2H NMR relaxation methods. Biochemistry. 2001 Aug 14;40(32):9560-9 Authors: Walsh ST, Lee AL, DeGrado WF, Wand AJ Understanding how the amino acid sequence of a polypeptide chain specifies a unique, functional three-dimensional structure remains an important goal, especially in the context of the emerging discipline of de novo protein...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR
The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy. Biochemistry. 1997 Nov 4;36(44):13657-66 Authors: Wang G, Sparrow JT, Cushley RJ The conformation of a synthetic peptide of 46 residues from apoA-I was investigated by fluorescence, CD, and 2D NMR spectroscopies in lipid-mimetic environments....
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Leptin is a four-helix bundle: secondary structure by NMR.
Leptin is a four-helix bundle: secondary structure by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Leptin is a four-helix bundle: secondary structure by NMR. FEBS Lett. 1997 Apr 28;407(2):239-42 Authors: Kline AD, Becker GW, Churgay LM, Landen BE, Martin DK, Muth WL, Rathnachalam R, Richardson JM, Schoner B, Ulmer M, Hale JE Leptin is a signaling protein that in its mutant forms has been associated with obesity and Type II diabetes. The lack of sequence...
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Leptin is a four-helix bundle: secondary structure by NMR.
Leptin is a four-helix bundle: secondary structure by NMR. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Leptin is a four-helix bundle: secondary structure by NMR. FEBS Lett. 1997 Apr 28;407(2):239-42 Authors: Kline AD, Becker GW, Churgay LM, Landen BE, Martin DK, Muth WL, Rathnachalam R, Richardson JM, Schoner B, Ulmer M, Hale JE Leptin is a signaling protein that in its mutant forms has been associated with obesity and Type II diabetes. The lack of sequence...
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] NMR analysis reveals a positively charged hydrophobic domain as a common motif to bou
NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine. Related Articles NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine. Biochemistry. 1994 Jan 25;33(3):644-50 Authors: Fraenkel Y, Gershoni JM, Navon G A complete 1H assignment of d-tubocurarine was carried out using 1D and 2D NMR techniques. Geometries of free acetylcholine (ACh) and d-tubocurarine were compared with those of the ligands bound to a...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Loop mobility in a four-helix-bundle protein: 15N NMR relaxation measurements on huma
Loop mobility in a four-helix-bundle protein: 15N NMR relaxation measurements on human interleukin-4. Related Articles Loop mobility in a four-helix-bundle protein: 15N NMR relaxation measurements on human interleukin-4. Biochemistry. 1992 Nov 3;31(43):10431-7 Authors: Redfield C, Boyd J, Smith LJ, Smith RA, Dobson CM 15N NOE, T1, and T2 measurements have been carried out on uniformly 15N-labeled human interleukin-4. Analysis of the results in terms of order parameters (S2) shows that although the helical core of this four-helix-bundle protein...
nmrlearner Journal club 0 08-21-2010 11:45 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:00 AM.


Map