Related ArticlesNMR structure and functional studies of the Mu repressor DNA-binding domain.
Biochemistry. 1999 Jun 29;38(26):8367-76
Authors: Ilangovan U, Wojciak JM, Connolly KM, Clubb RT
The repressor protein of bacteriophage Mu establishes and maintains lysogeny by shutting down transposition functions needed for phage DNA replication. It interacts with several repeated DNA sequences within the early operator, preventing transcription from two divergent promoters. It also directly represses transposition by competing with the MuA transposase for an internal activation sequence (IAS) that is coincident with the operator and required for efficient transposition. The transposase and repressor proteins compete for the operator/IAS region using homologous DNA-binding domains located at their amino termini. Here we present the solution structure of the amino-terminal DNA-binding domain from the repressor protein determined by heteronuclear multidimensional nuclear magnetic resonance spectroscopy. The structure of the repressor DNA-binding domain provides insights into the molecular basis of several temperature sensitive mutations and, in combination with complementary experiments using flourescence anisotropy, surface plasmon resonance, and circular dichroism, defines the structural and biochemical differences between the transposase and repressor DNA-binding modules. We find that the repressor and enhancer domains possess similar three-dimensional structures, thermostabilities, and intrinsic affinities for DNA. This latter result suggests that the higher affinity of the full-length repressor relative to that of the MuA transposase protein originates from cooperative interactions between repressor protomers and not from intrinsic differences in their DNA-binding domains. In addition, we present the results of nucleotide and amino acid mutagenesis which delimits the minimal repressor DNA-binding module and coarsely defines the nucleotide dependence of repressor binding.
[NMR paper] NMR structures of salt-refolded forms of the 434-repressor DNA-binding domain in 6 M
NMR structures of salt-refolded forms of the 434-repressor DNA-binding domain in 6 M urea.
Related Articles NMR structures of salt-refolded forms of the 434-repressor DNA-binding domain in 6 M urea.
Biochemistry. 2004 Nov 9;43(44):13937-43
Authors: Pervushin K, Wider G, Iwai H, Wüthrich K
The N-terminal 63-residue fragment of the phage 434-repressor, 434(1-63), has a well-defined globular fold in H(2)O solution, and is unfolded in 6 M urea at pH 7.5. In this study, 434(1-63) has been refolded by adding either 1.7 M NaCl or 0.47 M NaTFA to the...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] Trp repressor-operator binding: NMR and electrophoretic mobility shift studies of the
Trp repressor-operator binding: NMR and electrophoretic mobility shift studies of the effect of DNA sequence and corepressor binding on two Trp repressor-operator complexes.
Related Articles Trp repressor-operator binding: NMR and electrophoretic mobility shift studies of the effect of DNA sequence and corepressor binding on two Trp repressor-operator complexes.
Biochemistry. 2002 Dec 17;41(50):14866-78
Authors: Jaseja M, Jeeves M, Hyde EI
In Trp repressor-DNA complexes, most interactions either occur with phosphate groups or are...
[NMR paper] NMR spectroscopic studies of the DNA-binding domain of the monomer-binding nuclear or
NMR spectroscopic studies of the DNA-binding domain of the monomer-binding nuclear orphan receptor, human estrogen related receptor-2. The carboxyl-terminal extension to the zinc-finger region is unstructured in the free form of the protein.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_full_free.gif Related Articles NMR spectroscopic studies of the DNA-binding domain of the monomer-binding nuclear orphan receptor, human estrogen related receptor-2. The carboxyl-terminal extension to the zinc-finger region...
nmrlearner
Journal club
0
08-22-2010 05:08 PM
[NMR paper] Solution structure of the LexA repressor DNA binding domain determined by 1H NMR spec
Solution structure of the LexA repressor DNA binding domain determined by 1H NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Solution structure of the LexA repressor DNA binding domain determined by 1H NMR spectroscopy.
EMBO J. 1994 Sep 1;13(17):3936-44
Authors: Fogh RH, Ottleben G, Rüterjans H, Schnarr M, Boelens R, Kaptein R
The structure of the 84 residue DNA binding domain of the Escherichia coli LexA repressor has been determined from...
nmrlearner
Journal club
0
08-22-2010 03:29 AM
[NMR paper] NMR studies of the POU-specific DNA-binding domain of Oct-1: sequential 1H and 15N as
NMR studies of the POU-specific DNA-binding domain of Oct-1: sequential 1H and 15N assignments and secondary structure.
Related Articles NMR studies of the POU-specific DNA-binding domain of Oct-1: sequential 1H and 15N assignments and secondary structure.
Biochemistry. 1993 Jun 15;32(23):6032-40
Authors: Cox M, Dekker N, Boelens R, Verrijzer CP, van der Vliet PC, Kaptein R
The 1H and 15N resonances of the POU-specific DNA-binding domain of transcription factor Oct-1 have been assigned sequentially using two-dimensional homo- and heteronuclear...
nmrlearner
Journal club
0
08-21-2010 11:53 PM
[NMR paper] Secondary structure of the homeo domain of yeast alpha 2 repressor determined by NMR
Secondary structure of the homeo domain of yeast alpha 2 repressor determined by NMR spectroscopy.
Related Articles Secondary structure of the homeo domain of yeast alpha 2 repressor determined by NMR spectroscopy.
Genes Dev. 1991 May;5(5):764-72
Authors: Phillips CL, Vershon AK, Johnson AD, Dahlquist FW
The yeast alpha 2 protein is a regulator of cell type in Saccharomyces cerevisiae. It represses transcription of a set of target genes by binding to an operator located upstream of each of these genes. The alpha 2 protein shares weak sequence...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
Robust structure-based resonance assignment for functional protein studies by NMR
Abstract High-throughput functional protein NMR studies, like protein interactions or dynamics, require an automated approach for the assignment of the protein backbone. With the availability of a growing number of protein 3D structures, a new class of automated approaches, called structure-based assignment, has been developed quite recently. Structure-based approaches use primarily NMR input data that are not based on J-coupling and for which connections between residues are not limited by through bonds magnetization transfer efficiency. We present here a robust structure-based assignment...