BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-17-2010, 11:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR structure and dynamics of an RNA motif common to the spliceosome branch-point hel

NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein.

Related Articles NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein.

Biochemistry. 1998 Sep 29;37(39):13486-98

Authors: Smith JS, Nikonowicz EP

The RNA molecules that make up the spliceosome branch-point helix and the binding site for phage GA coat protein share a secondary structure motif in which two consecutive adenine residues occupy the strand opposite a single uridine, creating the potential to form one of two different A.U base pairs while leaving the other adenine unpaired or bulged. During the splicing of introns out of pre-mRNA, the 2'-OH of the bulged adenine participates in the transesterification reaction at the 5'-exon and forms the branch-point residue of the lariat intermediate. Either adenine may act as the branch-point residue in mammals, but the 3'-proximal adenine does so preferentially. When bound to phage GA coat protein, the bulged adenine loops out of the helix and occupies a binding pocket on the surface of the protein, forming a nucleation complex for phage assembly. The coat protein can bind helices with bulged adenines at either position, but the 3'-proximal site binds with greater affinity. We have studied this RNA motif in a 21 nucleotide hairpin containing a GA coat protein-binding site whose four nucleotide loop has been replaced by a more stable loop from the related phage Ms2. Using heteronuclear NMR spectroscopy, we have determined the structure of this hairpin to an overall precision of 2.0 A. Both adenine bases stack into the helix, and while all available NOE and coupling constant data are consistent with both possible A.U base pairs, the base pair involving the 5'-proximal adenine appears to be the major conformation. The 3'-proximal bulged adenine protonates at unusually high pH, and to account for this, we propose a model in which the protonated adenine is stabilized by a hydrogen bond to the uridine O2 of the A.U base pair. The 2'-OH of the bulged adenine adopts a regular A-form helical geometry, suggesting that in order to participate in the splicing reaction, the conformation of the branch-point helix in the active spliceosome may change from the conformation described here. Thus, while the adenine site preferences of the spliceosome and of phage GA may be due to protein factors, the preferred adenine is predisposed in the free RNA to conformational rearrangement involved in formation of the active complexes.

PMID: 9753434 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Interaction Tensors and Local Dynamics in Common Structural Motifs of Nitrogen: A Solid-State 14N NMR and DFT Study
Interaction Tensors and Local Dynamics in Common Structural Motifs of Nitrogen: A Solid-State 14N NMR and DFT Study Luke A. O’Dell, Robert W. Schurko, Kristopher J. Harris, Jochen Autschbach and Christopher I. Ratcliffe http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja108181y/aop/images/medium/ja-2010-08181y_0020.gif Journal of the American Chemical Society DOI: 10.1021/ja108181y http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/RPRAYPgAJxo
nmrlearner Journal club 0 12-24-2010 03:08 AM
[NMR paper] Structure of the His44 --> Ala single point mutant of the distal finger motif of HIV-
Structure of the His44 --> Ala single point mutant of the distal finger motif of HIV-1 nucleocapsid protein: a combined NMR, molecular dynamics simulation, and fluorescence study. Related Articles Structure of the His44 --> Ala single point mutant of the distal finger motif of HIV-1 nucleocapsid protein: a combined NMR, molecular dynamics simulation, and fluorescence study. Biochemistry. 2004 Jun 22;43(24):7687-97 Authors: Stote RH, Kellenberger E, Muller H, Bombarda E, Roques BP, Kieffer B, Mély Y The nucleocapsid protein (NCp7) of human...
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] NMR structure of the Escherichia coli protein YacG: a novel sequence motif in the zin
NMR structure of the Escherichia coli protein YacG: a novel sequence motif in the zinc-finger family of proteins. Related Articles NMR structure of the Escherichia coli protein YacG: a novel sequence motif in the zinc-finger family of proteins. Proteins. 2002 Nov 1;49(2):289-93 Authors: Ramelot TA, Cort JR, Yee AA, Semesi A, Edwards AM, Arrowsmith CH, Kennedy MA
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] NMR solution structure of the 32-kDa platelet factor 4 ELR-motif N-terminal chimera:
NMR solution structure of the 32-kDa platelet factor 4 ELR-motif N-terminal chimera: a symmetric tetramer. NMR solution structure of the 32-kDa platelet factor 4 ELR-motif N-terminal chimera: a symmetric tetramer. Biochemistry. 1995 Sep 12;34(36):11399-409 Authors: Mayo KH, Roongta V, Ilyina E, Milius R, Barker S, Quinlan C, La Rosa G, Daly TJ Native human platelet factor 4 (PF4) is a homotetrameric protein (70 residues/subunit) known for its anticoagulant heparin binding activity. 2D 15N--1H HSQC NMR experiments of native PF4 in solution...
nmrlearner Journal club 0 08-22-2010 03:50 AM
[NMR paper] NMR analysis reveals a positively charged hydrophobic domain as a common motif to bou
NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine. Related Articles NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine. Biochemistry. 1994 Jan 25;33(3):644-50 Authors: Fraenkel Y, Gershoni JM, Navon G A complete 1H assignment of d-tubocurarine was carried out using 1D and 2D NMR techniques. Geometries of free acetylcholine (ACh) and d-tubocurarine were compared with those of the ligands bound to a...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] NMR analysis reveals a positively charged hydrophobic domain as a common motif to bou
NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine. Related Articles NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine. Biochemistry. 1994 Jan 25;33(3):644-50 Authors: Fraenkel Y, Gershoni JM, Navon G A complete 1H assignment of d-tubocurarine was carried out using 1D and 2D NMR techniques. Geometries of free acetylcholine (ACh) and d-tubocurarine were compared with those of the ligands bound to a...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] A branch and bound algorithm for protein structure refinement from sparse NMR data se
A branch and bound algorithm for protein structure refinement from sparse NMR data sets. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles A branch and bound algorithm for protein structure refinement from sparse NMR data sets. J Mol Biol. 1999 Jan 29;285(4):1691-710 Authors: Standley DM, Eyrich VA, Felts AK, Friesner RA, McDermott AE We describe new methods for predicting protein tertiary structures to low resolution given the specification of secondary structure and a...
nmrlearner Journal club 0 08-21-2010 04:03 PM
CING Common Interface for NMR structure Generation
CING Common Interface for NMR structure Generation More...
nmrlearner NMR bookmarks 0 08-19-2010 02:34 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:00 AM.


Map