Related ArticlesNMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein.
Biochemistry. 1998 Sep 29;37(39):13486-98
Authors: Smith JS, Nikonowicz EP
The RNA molecules that make up the spliceosome branch-point helix and the binding site for phage GA coat protein share a secondary structure motif in which two consecutive adenine residues occupy the strand opposite a single uridine, creating the potential to form one of two different A.U base pairs while leaving the other adenine unpaired or bulged. During the splicing of introns out of pre-mRNA, the 2'-OH of the bulged adenine participates in the transesterification reaction at the 5'-exon and forms the branch-point residue of the lariat intermediate. Either adenine may act as the branch-point residue in mammals, but the 3'-proximal adenine does so preferentially. When bound to phage GA coat protein, the bulged adenine loops out of the helix and occupies a binding pocket on the surface of the protein, forming a nucleation complex for phage assembly. The coat protein can bind helices with bulged adenines at either position, but the 3'-proximal site binds with greater affinity. We have studied this RNA motif in a 21 nucleotide hairpin containing a GA coat protein-binding site whose four nucleotide loop has been replaced by a more stable loop from the related phage Ms2. Using heteronuclear NMR spectroscopy, we have determined the structure of this hairpin to an overall precision of 2.0 A. Both adenine bases stack into the helix, and while all available NOE and coupling constant data are consistent with both possible A.U base pairs, the base pair involving the 5'-proximal adenine appears to be the major conformation. The 3'-proximal bulged adenine protonates at unusually high pH, and to account for this, we propose a model in which the protonated adenine is stabilized by a hydrogen bond to the uridine O2 of the A.U base pair. The 2'-OH of the bulged adenine adopts a regular A-form helical geometry, suggesting that in order to participate in the splicing reaction, the conformation of the branch-point helix in the active spliceosome may change from the conformation described here. Thus, while the adenine site preferences of the spliceosome and of phage GA may be due to protein factors, the preferred adenine is predisposed in the free RNA to conformational rearrangement involved in formation of the active complexes.
Interaction Tensors and Local Dynamics in Common Structural Motifs of Nitrogen: A Solid-State 14N NMR and DFT Study
Interaction Tensors and Local Dynamics in Common Structural Motifs of Nitrogen: A Solid-State 14N NMR and DFT Study
Luke A. O’Dell, Robert W. Schurko, Kristopher J. Harris, Jochen Autschbach and Christopher I. Ratcliffe
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja108181y/aop/images/medium/ja-2010-08181y_0020.gif
Journal of the American Chemical Society
DOI: 10.1021/ja108181y
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/RPRAYPgAJxo
nmrlearner
Journal club
0
12-24-2010 03:08 AM
[NMR paper] Structure of the His44 --> Ala single point mutant of the distal finger motif of HIV-
Structure of the His44 --> Ala single point mutant of the distal finger motif of HIV-1 nucleocapsid protein: a combined NMR, molecular dynamics simulation, and fluorescence study.
Related Articles Structure of the His44 --> Ala single point mutant of the distal finger motif of HIV-1 nucleocapsid protein: a combined NMR, molecular dynamics simulation, and fluorescence study.
Biochemistry. 2004 Jun 22;43(24):7687-97
Authors: Stote RH, Kellenberger E, Muller H, Bombarda E, Roques BP, Kieffer B, Mély Y
The nucleocapsid protein (NCp7) of human...
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] NMR structure of the Escherichia coli protein YacG: a novel sequence motif in the zin
NMR structure of the Escherichia coli protein YacG: a novel sequence motif in the zinc-finger family of proteins.
Related Articles NMR structure of the Escherichia coli protein YacG: a novel sequence motif in the zinc-finger family of proteins.
Proteins. 2002 Nov 1;49(2):289-93
Authors: Ramelot TA, Cort JR, Yee AA, Semesi A, Edwards AM, Arrowsmith CH, Kennedy MA
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] NMR solution structure of the 32-kDa platelet factor 4 ELR-motif N-terminal chimera:
NMR solution structure of the 32-kDa platelet factor 4 ELR-motif N-terminal chimera: a symmetric tetramer.
NMR solution structure of the 32-kDa platelet factor 4 ELR-motif N-terminal chimera: a symmetric tetramer.
Biochemistry. 1995 Sep 12;34(36):11399-409
Authors: Mayo KH, Roongta V, Ilyina E, Milius R, Barker S, Quinlan C, La Rosa G, Daly TJ
Native human platelet factor 4 (PF4) is a homotetrameric protein (70 residues/subunit) known for its anticoagulant heparin binding activity. 2D 15N--1H HSQC NMR experiments of native PF4 in solution...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] NMR analysis reveals a positively charged hydrophobic domain as a common motif to bou
NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine.
Related Articles NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine.
Biochemistry. 1994 Jan 25;33(3):644-50
Authors: Fraenkel Y, Gershoni JM, Navon G
A complete 1H assignment of d-tubocurarine was carried out using 1D and 2D NMR techniques. Geometries of free acetylcholine (ACh) and d-tubocurarine were compared with those of the ligands bound to a...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] NMR analysis reveals a positively charged hydrophobic domain as a common motif to bou
NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine.
Related Articles NMR analysis reveals a positively charged hydrophobic domain as a common motif to bound acetylcholine and d-tubocurarine.
Biochemistry. 1994 Jan 25;33(3):644-50
Authors: Fraenkel Y, Gershoni JM, Navon G
A complete 1H assignment of d-tubocurarine was carried out using 1D and 2D NMR techniques. Geometries of free acetylcholine (ACh) and d-tubocurarine were compared with those of the ligands bound to a...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] A branch and bound algorithm for protein structure refinement from sparse NMR data se
A branch and bound algorithm for protein structure refinement from sparse NMR data sets.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles A branch and bound algorithm for protein structure refinement from sparse NMR data sets.
J Mol Biol. 1999 Jan 29;285(4):1691-710
Authors: Standley DM, Eyrich VA, Felts AK, Friesner RA, McDermott AE
We describe new methods for predicting protein tertiary structures to low resolution given the specification of secondary structure and a...