BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-06-2021, 01:18 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR Structure Determinations of Small Proteins Using only One Fractionally 20% 13C- and Uniformly 100% 15N-Labeled Sample.

NMR Structure Determinations of Small Proteins Using only One Fractionally 20% 13C- and Uniformly 100% 15N-Labeled Sample.

Related Articles NMR Structure Determinations of Small Proteins Using only One Fractionally 20% 13C- and Uniformly 100% 15N-Labeled Sample.

Molecules. 2021 Feb 01;26(3):

Authors: Heikkinen HA, Backlund SM, Iwaï H


Abstract
Uniformly 13C- and 15N-labeled samples ensure fast and reliable nuclear magnetic resonance (NMR) assignments of proteins and are commonly used for structure elucidation by NMR. However, the preparation of uniformly labeled samples is a labor-intensive and expensive step. Reducing the portion of 13C-labeled glucose by a factor of five using a fractional 20% 13C- and 100% 15N-labeling scheme could lower the total chemical costs, yet retaining sufficient structural information of uniformly [13C, 15N]-labeled sample as a result of the improved sensitivity of NMR instruments. Moreover, fractional 13C-labeling can facilitate reliable resonance assignments of sidechains because of the biosynthetic pathways of each amino-acid. Preparation of only one [20% 13C, 100% 15N]-labeled sample for small proteins (
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] On the problem of resonance assignments in solid state NMR of uniformly (15)N,(13)C-labeled proteins.
On the problem of resonance assignments in solid state NMR of uniformly (15)N,(13)C-labeled proteins. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif On the problem of resonance assignments in solid state NMR of uniformly (15)N,(13)C-labeled proteins. J Magn Reson. 2015 Apr;253:166-72 Authors: Tycko R Abstract Determination of accurate resonance assignments from multidimensional chemical shift correlation spectra is one of the major problems in...
nmrlearner Journal club 0 03-24-2015 09:58 PM
On the problem of resonance assignments in solid state NMR of uniformly 15N,13C-labeled proteins
On the problem of resonance assignments in solid state NMR of uniformly 15N,13C-labeled proteins Publication date: April 2015 Source:Journal of Magnetic Resonance, Volume 253</br> Author(s): Robert Tycko</br> Determination of accurate resonance assignments from multidimensional chemical shift correlation spectra is one of the major problems in biomolecular solid state NMR, particularly for relative large proteins with less-than-ideal NMR linewidths. This article investigates the difficulty of resonance assignment, using a computational Monte Carlo/simulated...
nmrlearner Journal club 0 03-20-2015 01:48 AM
Erratum to: 13 C α CEST experiment on uniformly 13 C-labeled proteins
Erratum to: 13 C α CEST experiment on uniformly 13 C-labeled proteins Source: Journal of Biomolecular NMR
nmrlearner Journal club 0 02-11-2015 04:19 PM
13 C α CEST experiment on uniformly 13 C-labeled proteins
13 C α CEST experiment on uniformly 13 C-labeled proteins Abstract A new HSQC-based 13Cα CEST pulse scheme is proposed, which is suitable for uniformly 13C- or 13C, 15N-labeled samples in either water or heavy water. Except for Thr and Ser residues, the sensitivity of this scheme for uniformly labeled samples is similar to that of the previous scheme for selectively 13Cα-labeled samples with 100Â*% isotope enrichment. The experiment is demonstrated on an acyl carrier protein domain. Our 13Cα CEST data reveal that the minor state of the acyl...
nmrlearner Journal club 0 12-03-2014 04:05 PM
NMR structure analysis of uniformly 13C-labeled carbohydrates
NMR structure analysis of uniformly 13C-labeled carbohydrates Abstract In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of 13C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly 13C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight and one compound of medium molecular weight (13C-enriched O-antigenic polysaccharide isolated from Escherichia coli O142, ~10Â*kDa). The first step in this approach involves...
nmrlearner Journal club 0 06-19-2014 10:21 PM
[NMR paper] NMR structure analysis of uniformly (13)C-labeled carbohydrates.
NMR structure analysis of uniformly (13)C-labeled carbohydrates. Related Articles NMR structure analysis of uniformly (13)C-labeled carbohydrates. J Biomol NMR. 2014 Apr 26; Authors: Fontana C, Kovacs H, Widmalm G Abstract In this study, a set of nuclear magnetic resonance experiments, some of them commonly used in the study of (13)C-labeled proteins and/or nucleic acids, is applied for the structure determination of uniformly (13)C-enriched carbohydrates. Two model substances were employed: one compound of low molecular weight ...
nmrlearner Journal club 0 04-29-2014 12:04 PM
Cost-effective method for the preparation of uniformly labeled myristoylated proteins for NMR measurements
Cost-effective method for the preparation of uniformly labeled myristoylated proteins for NMR measurements Publication date: Available online 21 March 2014 Source:Protein Expression and Purification</br> Author(s): Tomáš Kroupa , Jan Prchal , Michal Doležal , Tomáš Ruml , Richard Hrabal</br> Nuclear magnetic resonance (NMR) is a powerful technique for solving protein structures orstudying their interactions. However, it requires molecules labeled with NMR sensitive isotopes like carbon13C and nitrogen15N. The recombinant expression of labeled proteins is simple...
nmrlearner Journal club 0 03-22-2014 01:28 AM
[NMR paper] Selective 'unlabeling' of amino acids in fractionally 13C labeled proteins: an approa
Selective 'unlabeling' of amino acids in fractionally 13C labeled proteins: an approach for stereospecific NMR assignments of CH3 groups in Val and Leu residues. Related Articles Selective 'unlabeling' of amino acids in fractionally 13C labeled proteins: an approach for stereospecific NMR assignments of CH3 groups in Val and Leu residues. J Biomol NMR. 2001 Mar;19(3):267-72 Authors: Atreya HS, Chary KV A novel methodology for stereospecific NMR assignments of methyl (CH3) groups of Val and Leu residues in fractionally 13C-labeled proteins is...
nmrlearner Journal club 0 11-19-2010 08:32 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:36 PM.


Map