Related ArticlesNMR structure determination of proteins supplemented by quantum chemical calculations: detailed structure of the Ca2+ sites in the EGF34 fragment of protein S.
J Biomol NMR. 2005 Feb;31(2):97-114
Authors: Hsiao YW, Drakenberg T, Ryde U
We present and test two methods to use quantum chemical calculations to improve standard protein structure refinement by molecular dynamics simulations restrained to experimental NMR data. In the first, we replace the molecular mechanics force field (employed in standard refinement to supplement experimental data) for a site of interest by quantum chemical calculations. This way, we obtain an accurate description of the site, even if a molecular-mechanics force field does not exist for this site, or if there is little experimental information about the site. Moreover, the site may change its bonding during the refinement, which often is the case for metal sites. The second method is to extract a molecular mechanics potential for the site of interest from a quantum chemical geometry optimisation and frequency calculation. We apply both methods to the two Ca2+ sites in the epidermal growth factor-like domains 3 and 4 in the vitamin K-dependent protein S and compare them to various methods to treat these sites in standard refinement. We show that both methods perform well and have their advantages and disadvantages. We also show that the glutamate Ca2+ ligand is unlikely to bind in a bidentate mode, in contrast to the crystal structure of an EGF domain of factor IX.
1H NMR Chemical Shift Calculations as a Probe of Supramolecular Host–Guest Geometry
1H NMR Chemical Shift Calculations as a Probe of Supramolecular Host–Guest Geometry
Jeffrey S. Mugridge, Robert G. Bergman and Kenneth N. Raymond
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja202254x/aop/images/medium/ja-2011-02254x_0010.gif
Journal of the American Chemical Society
DOI: 10.1021/ja202254x
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/wR-1b5WtJhc
nmrlearner
Journal club
0
06-30-2011 05:01 AM
[NMR paper] Influence of chemical shift tolerances on NMR structure calculations using ARIA proto
Influence of chemical shift tolerances on NMR structure calculations using ARIA protocols for assigning NOE data.
Related Articles Influence of chemical shift tolerances on NMR structure calculations using ARIA protocols for assigning NOE data.
J Biomol NMR. 2005 Jan;31(1):21-34
Authors: Fossi M, Linge J, Labudde D, Leitner D, Nilges M, Oschkinat H
Large-scale protein structure determination by NMR via automatic assignment of NOESY spectra requires the adjustment of several parameters for optimal performance. Among those are the chemical shift...
nmrlearner
Journal club
0
11-24-2010 11:14 PM
[NMR paper] Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins thr
Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR.
Related Articles Determination of chemical shift anisotropy tensors of carbonyl nuclei in proteins through cross-correlated relaxation in NMR.
Chemphyschem. 2004 Jun 21;5(6):807-14
Authors: Cisnetti F, Loth K, Pelupessy P, Bodenhausen G
The principal components and orientations of the chemical shift anisotropy (CSA) tensors of nearly all 13C carbonyl nuclei in a small protein have been determined in isotropic solution...
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] Limits of NMR structure determination using variable target function calculations: ri
Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study.
J Mol Biol. 1997 Feb 21;266(2):400-23
Authors: Pfeiffer S, Karimi-Nejad Y, Rüterjans H
Limits of NMR structure determination using multidimensional NMR spectroscopy, variable target function...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] Limits of NMR structure determination using variable target function calculations: ri
Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Limits of NMR structure determination using variable target function calculations: ribonuclease T1, a case study.
J Mol Biol. 1997 Feb 21;266(2):400-23
Authors: Pfeiffer S, Karimi-Nejad Y, Rüterjans H
Limits of NMR structure determination using multidimensional NMR spectroscopy, variable target function...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] Relaxation data in NMR structure determination: model calculations for the lysozyme-G
Relaxation data in NMR structure determination: model calculations for the lysozyme-Gd3+ complex.
Related Articles Relaxation data in NMR structure determination: model calculations for the lysozyme-Gd3+ complex.
Proteins. 1991;10(2):117-29
Authors: Sutcliffe MJ, Dobson CM
The effect of including paramagnetic relaxation data as additional restraints in the determination of protein tertiary structures from NMR data has been explored by a systematic series of model calculations. The system used for testing the method was the 2.0 A resolution...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
Density functional calculations of 15N chemical shifts in solvated dipeptides
Density functional calculations of 15N chemical shifts in solvated dipeptides
Ling Cai, David Fushman and Daniel S. Kosov
Journal of Biomolecular NMR; 2008; 41(2) pp 77 - 88
Abstract:
We performed density functional calculations to examine the effects of solvation, hydrogen bonding, backbone conformation, and the side chain on 15N chemical shielding in proteins. We used N-methylacetamide (NMA) and N-formyl-alanyl-X (with X being one of the 19 naturally occurring amino acids excluding proline) as model systems. In addition, calculations were performed for selected fragments from...