Related ArticlesNMR structure of the complex between the zinc finger protein NCp10 of Moloney murine leukemia virus and the single-stranded pentanucleotide d(ACGCC): comparison with HIV-NCp7 complexes.
Biochemistry. 1999 Oct 5;38(40):12984-94
Authors: Schüler W, Dong C, Wecker K, Roques BP
The structure of the 56 amino acid nucleocapsid protein NCp10 of retrovirus MoMuLV, which contains a single CX(2)CX(4)HX(4)C-type zinc finger, has been determined previously by NMR. The important role of NCp10 (or NCp7 for HIV-1) in the retroviral life cycle seems mainly related to their preferential binding to single-stranded nucleic acids. We report here the structure of the complex formed between the biologically active (14-53)NCp10 and the oligonucleotide d(ACGCC) in aqueous solution determined by 2D (1)H NMR based methods. The aromatic residue Trp(35) of NCp10 directs nucleic acid complexation as shown by its complete fluorescence quenching upon addition of d(ACGCC). (1)H and (31)P NMR studies support the insertion of Trp(35) between the G(3) and C(4) bases. A total of 577 NOE distance restraints, of which 40 were intermolecular, were used for the structure determination. The zinc finger provides a well-defined surface for the binding of d(ACGCC) through hydrophobic interactions and tryptophan stacking on the guanine. This latter interaction was also observed in the NMR-derived structures of the complexes between NCp7, which contains two successive zinc fingers, and single-stranded DNA and RNA, supporting the proposal for a major role played by aromatic residues of NCp proteins in nucleic acid recognition. Upon binding to the nucleotide a new loop in NCp10 that participates in the intermolecular interaction is formed. Additional interactions provided by positively charged residues surrounding the zinc finger appear necessary for tight binding. The structure of the complex NCp10-d(ACGCC) gives a structural explanation for the loss of virus infectivity following point mutations in the finger domain.
[NMR paper] NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana S
NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana SUPERMAN protein.
Related Articles NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana SUPERMAN protein.
Chembiochem. 2003 Mar 3;4(2-3):171-80
Authors: Isernia C, Bucci E, Leone M, Zaccaro L, Di Lello P, Digilio G, Esposito S, Saviano M, Di Blasio B, Pedone C, Pedone PV, Fattorusso R
Zinc finger domains of the classical type represent the most abundant DNA binding domains in eukaryotic transcription factors. Plant proteins...
nmrlearner
Journal club
0
11-24-2010 09:01 PM
[NMR paper] Application of cross-correlated NMR spin relaxation to the zinc-finger protein CRP2(L
Application of cross-correlated NMR spin relaxation to the zinc-finger protein CRP2(LIM2): evidence for collective motions in LIM domains.
Related Articles Application of cross-correlated NMR spin relaxation to the zinc-finger protein CRP2(LIM2): evidence for collective motions in LIM domains.
Biochemistry. 2001 Aug 14;40(32):9596-604
Authors: Schüler W, Kloiber K, Matt T, Bister K, Konrat R
The solution structure of quail CRP2(LIM2) was significantly improved by using an increased number of NOE constraints obtained from a 13C,15N-labeled...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] NMR and molecular dynamics studies of the hydration of a zinc finger-DNA complex.
NMR and molecular dynamics studies of the hydration of a zinc finger-DNA complex.
Related Articles NMR and molecular dynamics studies of the hydration of a zinc finger-DNA complex.
J Mol Biol. 2000 Oct 6;302(5):1101-17
Authors: Tsui V, Radhakrishnan I, Wright PE, Case DA
The hydration of a high-affinity protein-DNA complex involving the three amino terminal zinc finger domains of transcription factor IIIA (TFIIIA) and a 15-base-pair DNA duplex was investigated by NMR spectroscopy and molecular dynamics (MD) simulations. Intermolecular nuclear...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] Solution structures of human immunodeficiency virus type 1 (HIV-1) and moloney murine
Solution structures of human immunodeficiency virus type 1 (HIV-1) and moloney murine leukemia virus (MoMLV) capsid protein major-homology-region peptide analogs by NMR spectroscopy.
Related Articles Solution structures of human immunodeficiency virus type 1 (HIV-1) and moloney murine leukemia virus (MoMLV) capsid protein major-homology-region peptide analogs by NMR spectroscopy.
Eur J Biochem. 1998 Oct 1;257(1):69-77
Authors: Clish CB, Peyton DH, Barklis E
The capsid domain of retroviral Gag proteins possesses a single highly conserved...
[NMR paper] Replacement of His23 by Cys in a zinc finger of HIV-1 NCp7 led to a change in 1H NMR-
Replacement of His23 by Cys in a zinc finger of HIV-1 NCp7 led to a change in 1H NMR-derived 3D structure and to a loss of biological activity.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Replacement of His23 by Cys in a zinc finger of HIV-1 NCp7 led to a change in 1H NMR-derived 3D structure and to a loss of biological activity.
FEBS Lett. 1993 Sep 27;331(1-2):43-8
Authors: Julian N, Demene H, Morellet N, Maigret B, Roques BP
The nucleocapsid protein NCp7 of human...
nmrlearner
Journal club
0
08-22-2010 03:01 AM
[NMR paper] Zinc- and sequence-dependent binding to nucleic acids by the N-terminal zinc finger o
Zinc- and sequence-dependent binding to nucleic acids by the N-terminal zinc finger of the HIV-1 nucleocapsid protein: NMR structure of the complex with the Psi-site analog, dACGCC.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Zinc- and sequence-dependent binding to nucleic acids by the N-terminal zinc finger of the HIV-1 nucleocapsid protein: NMR...