An algorithm, CYLIB, is presented for converting molecular topology descriptions from the PDB Chemical Component Dictionary into CYANA residue library entries. The CYANA structure calculation algorithm uses torsion angle molecular dynamics for the efficient computation of three-dimensional structures from NMR-derived restraints. For this, the molecules have to be represented in torsion angle space with rotations around covalent single bonds as the only degrees of freedom. The molecule must be given a tree structure of torsion angles connecting rigid units composed of one or several atoms with fixed relative positions. Setting up CYANA residue library entries therefore involves, besides straightforward format conversion, the non-trivial step of defining a suitable tree structure of torsion angles, and to re-order the atoms in a way that is compatible with this tree structure. This can be done manually for small numbers of ligands but the process is time-consuming and error-prone. An automated method is necessary in order to handle the large number of different potential ligand molecules to be studied in drug design projects. Here, we present an algorithm for this purpose, and show that CYANA structure calculations can be performed with almost all small molecule ligands and non-standard amino acid residues in the PDB Chemical Component Dictionary.
[NMR paper] Reliable resonance assignments of selected residues of proteins with known structure based on empirical NMR chemical shift prediction.
Reliable resonance assignments of selected residues of proteins with known structure based on empirical NMR chemical shift prediction.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Reliable resonance assignments of selected residues of proteins with known structure based on empirical NMR chemical shift prediction.
J Magn Reson. 2015 Mar 7;254:93-97
Authors: Li DW, Meng D, Brüschweiler R
Abstract
A robust NMR resonance assignment method...
nmrlearner
Journal club
0
04-13-2015 09:11 PM
[NMR paper] Reliable Resonance Assignments of Selected Residues of Proteins with Known Structure Based on Empirical NMR Chemical Shift Prediction
Reliable Resonance Assignments of Selected Residues of Proteins with Known Structure Based on Empirical NMR Chemical Shift Prediction
Publication date: Available online 7 March 2015
Source:Journal of Magnetic Resonance</br>
Author(s): Da-Wei Li , Dan Meng , Rafael Brüschweiler</br>
A robust NMR resonance assignment method is introduced for proteins whose 3D structure has previously been determined by X-ray crystallography. The goal of the method is to obtain a subset of correct assignments from a parsimonious set of 3D NMR experiments of 15N, 13C labeled proteins....
nmrlearner
Journal club
0
03-08-2015 01:07 AM
Influence of 1H chemical shift assignments of the interface residues on structure determinations of homodimeric proteins
Influence of 1H chemical shift assignments of the interface residues on structure determinations of homodimeric proteins
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Yi-Jan Lin, Donata K. Kirchner, Peter Güntert</br>
Homodimeric proteins pose a difficulty for NMR structure determination because the degeneracy of the chemical shifts in the two identical monomers implies an ambiguity in all assignments of distance restraints. For homodimeric proteins, residues involved in the interface between two monomers provide essential intermolecular NOEs. The...
nmrlearner
Journal club
0
07-14-2012 01:53 PM
Two-dimensional concurrent HMQC-COSY as an approach for small molecule chemical shift assignment and compound identification
Two-dimensional concurrent HMQC-COSY as an approach for small molecule chemical shift assignment and compound identification
Abstract Chemical shift assignment is the first step toward the structure elucidation of natural products and other chemical compounds. We propose here the use of 2D concurrent HMQC-COSY as an experiment for rapid chemical shift assignment of small molecules. This experiment provides well-dispersed 1Hâ??13C peak patterns that are distinctive for different functional groups plus 1Hâ??1H COSY connectivities that serve to identify adjacent groups. The COSY diagonal...
nmrlearner
Journal club
0
03-09-2011 04:19 AM
Preparation of protein samples for NMR structure, function, and small-molecule screening studies.
Preparation of protein samples for NMR structure, function, and small-molecule screening studies.
Preparation of protein samples for NMR structure, function, and small-molecule screening studies.
Methods Enzymol. 2011;493:21-60
Authors: Acton TB, Xiao R, Anderson S, Aramini J, Buchwald WA, Ciccosanti C, Conover K, Everett J, Hamilton K, Huang YJ, Janjua H, Kornhaber G, Lau J, Lee DY, Liu G, Maglaqui M, Ma L, Mao L, Patel D, Rossi P, Sahdev S, Shastry R, Swapna GV, Tang Y, Tong S, Wang D, Wang H, Zhao L, Montelione GT
In this chapter, we...
nmrlearner
Journal club
0
03-05-2011 01:02 PM
[NMR paper] NMR structure of a complex between MDM2 and a small molecule inhibitor.
NMR structure of a complex between MDM2 and a small molecule inhibitor.
Related Articles NMR structure of a complex between MDM2 and a small molecule inhibitor.
J Biomol NMR. 2004 Oct;30(2):163-73
Authors: Fry DC, Emerson SD, Palme S, Vu BT, Liu CM, Podlaski F
MDM2 is a regulator of cell growth processes that acts by binding to the tumor suppressor protein p53 and ultimately restraining its activity. While inactivation of p53 by mutation is commonly observed in human cancers, a substantial percentage of tumors express wild type p53. In many of...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
[NMR paper] RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprote
RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins.
Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2495-9
Authors: Hoffman DW, Query CC, Golden BL, White...
nmrlearner
Journal club
0
08-21-2010 11:16 PM
Small Molecule NMR Scientist (B.S./ M.S.) at Novartis Ag (Cambridge, MA)
Small Molecule NMR Scientist (B.S./ M.S.) at Novartis Ag (Cambridge, MA)
using the state-of-the-art NMR methodologies. As an NMR scientist within the team, you will be responsible for ... in small molecular NMR with demonstrated success in modern NMR methodologies. Demonstrated skills in data collection...
More...