BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2010, 08:44 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR structure and backbone dynamics of a concatemer of epidermal growth factor homolo

NMR structure and backbone dynamics of a concatemer of epidermal growth factor homology modules of the human low-density lipoprotein receptor.

Related Articles NMR structure and backbone dynamics of a concatemer of epidermal growth factor homology modules of the human low-density lipoprotein receptor.

J Mol Biol. 2001 Aug 10;311(2):341-56

Authors: Kurniawan ND, Aliabadizadeh K, Brereton IM, Kroon PA, Smith R

The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear 1H-15N NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta-strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. 15N longitudinal and transverse relaxation rates, and [1H]-15N heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85+/-0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides.

PMID: 11478865 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
The NMR solution structure of human epidermal growth factor (hEGF) at physiological pH and its interactions with suramin.
The NMR solution structure of human epidermal growth factor (hEGF) at physiological pH and its interactions with suramin. The NMR solution structure of human epidermal growth factor (hEGF) at physiological pH and its interactions with suramin. Biochem Biophys Res Commun. 2010 Nov 26;402(4):705-10 Authors: Huang HW, Mohan SK, Yu C Human epidermal growth factor (hEGF) induces the proliferation, differentiation and survival of various cell types including tumor-derived cells. Generally, hEGF performs its biological function by binding to a specific...
nmrlearner Journal club 0 01-14-2011 12:05 PM
[NMR paper] NMR study of the transforming growth factor-alpha (TGF-alpha)-epidermal growth factor
NMR study of the transforming growth factor-alpha (TGF-alpha)-epidermal growth factor receptor complex. Visualization of human TGF-alpha binding determinants through nuclear Overhauser enhancement analysis. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_full_free.gif Related Articles NMR study of the transforming growth factor-alpha (TGF-alpha)-epidermal growth factor receptor complex. Visualization of human TGF-alpha binding determinants through nuclear Overhauser enhancement analysis. J Biol...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] 1H-NMR assignment and solution structure of human acidic fibroblast growth factor act
1H-NMR assignment and solution structure of human acidic fibroblast growth factor activated by inositol hexasulfate. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles 1H-NMR assignment and solution structure of human acidic fibroblast growth factor activated by inositol hexasulfate. J Mol Biol. 1994 Sep 9;242(1):81-98 Authors: Pineda-Lucena A, Jiménez MA, Nieto JL, Santoro J, Rico M, Giménez-Gallego G A major fragment of human acidic fibroblast growth factor of 132...
nmrlearner Journal club 0 08-22-2010 03:29 AM
[NMR paper] How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR s
How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. Related Articles How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J Biol Chem. 1992 Sep 25;267(27):19642-9 Authors: Selander-Sunnerhagen M, Ullner M, Persson E, Teleman O, Stenflo J, Drakenberg T Domains homologous to the epidermal growth factor...
nmrlearner Journal club 0 08-21-2010 11:45 PM
[NMR paper] 1H-NMR assignment and secondary structure of human insulin-like growth factor-I (IGF-
1H-NMR assignment and secondary structure of human insulin-like growth factor-I (IGF-I) in solution. Related Articles 1H-NMR assignment and secondary structure of human insulin-like growth factor-I (IGF-I) in solution. J Biochem. 1992 Apr;111(4):529-36 Authors: Sato A, Nishimura S, Ohkubo T, Kyogoku Y, Koyama S, Kobayashi M, Yasuda T, Kobayashi Y Human insulin-like growth factor-I (IGF-I) was studied by two-dimensional 1H-NMR spectroscopy. Resonance assignments were obtained for all the backbone protons and almost all of the sidechain protons...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] Solution structure of murine epidermal growth factor determined by NMR spectroscopy a
Solution structure of murine epidermal growth factor determined by NMR spectroscopy and refined by energy minimization with restraints. Related Articles Solution structure of murine epidermal growth factor determined by NMR spectroscopy and refined by energy minimization with restraints. Biochemistry. 1992 Jan 14;31(1):236-49 Authors: Montelione GT, Wüthrich K, Burgess AW, Nice EC, Wagner G, Gibson KD, Scheraga HA The solution structure of murine epidermal growth factor (mEGF) at pH 3.1 and a temperature of 28 degrees C has been determined...
nmrlearner Journal club 0 08-21-2010 11:41 PM
[NMR paper] Structure-function relationships in human epidermal growth factor studied by site-dir
Structure-function relationships in human epidermal growth factor studied by site-directed mutagenesis and 1H NMR. Related Articles Structure-function relationships in human epidermal growth factor studied by site-directed mutagenesis and 1H NMR. Biochemistry. 1991 Sep 10;30(36):8891-8 Authors: Hommel U, Dudgeon TJ, Fallon A, Edwards RM, Campbell ID In order to elucidate the mechanism of interaction between human epidermal growth factor (EGF) and its receptor, selected variants of EGF, differing by single amino acid substitutions, have been...
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] Structure-function relationships in human epidermal growth factor studied by site-dir
Structure-function relationships in human epidermal growth factor studied by site-directed mutagenesis and 1H NMR. Related Articles Structure-function relationships in human epidermal growth factor studied by site-directed mutagenesis and 1H NMR. Biochemistry. 1991 Sep 10;30(36):8891-8 Authors: Hommel U, Dudgeon TJ, Fallon A, Edwards RM, Campbell ID In order to elucidate the mechanism of interaction between human epidermal growth factor (EGF) and its receptor, selected variants of EGF, differing by single amino acid substitutions, have been...
nmrlearner Journal club 0 08-21-2010 11:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:28 PM.


Map