BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-22-2010, 03:01 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR structural studies of the tight complex between a trifluoromethyl ketone inhibito

NMR structural studies of the tight complex between a trifluoromethyl ketone inhibitor and the 85-kDa human phospholipase A2.

Related Articles NMR structural studies of the tight complex between a trifluoromethyl ketone inhibitor and the 85-kDa human phospholipase A2.

Biochemistry. 1993 Nov 30;32(47):12560-5

Authors: Trimble LA, Street IP, Perrier H, Tremblay NM, Weech PK, Bernstein MA

Arachidonyl trifluoromethyl ketone (AACOCF3) is a slow- and tight-binding inhibitor of the human cytosolic phospholipase A2 (cPLA2) [Street et al. (1993) Biochemistry 32, 5935]. 19F and 13C NMR experiments have been carried out to elucidate the structure of the cPLA2.AACOCF3 complex. One mole of AACOCF3 per mole of enzyme is tightly bound in the active site while excess molar equivalents of the inhibitor associate loosely and nonspecifically with hydrophobic regions of the protein. Incubation of the cPLA2.AACOCF3 complex with a 10-fold molar excess of a structurally related inhibitor allows the slow dissociation of the enzyme-inhibitor complex to be followed with 19F NMR. These results establish that the bound inhibitor is in slow exchange with the free ligand and that inhibition of the cPLA2 by AACOCF3 is not due to irreversible modification of the protein. AACOCF3 labeled with 13C at the carbonyl position was used to determine the nature of the bound inhibitor species. A comparison of the 13C NMR chemical shift value obtained from labeled enzyme-inhibitor complex (delta c 101.0 ppm) with the chemical shift values obtained from model compounds suggests that the enzyme-bound inhibitor species is a charged hemiketal. These results are very similar to those obtained previously with alpha-chymotrypsin and a peptidyl trifluoromethyl ketone inhibitor [Liang, T.-C., & Abeles, R. H. (1987) Biochemistry 26, 7603] and, by analogy with the serine proteases, a structural model for the cPLA2.AACOCF3 complex is proposed.

PMID: 8251473 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Conformational Study of 9-Dehydro-9-Trifluoromethyl Cinchona Alkaloids via 19F NMR Spectroscopy: Emergence of Trifluoromethyl Moiety as a Conformational Stabilizer and a Probe
Conformational Study of 9-Dehydro-9-Trifluoromethyl Cinchona Alkaloids via 19F NMR Spectroscopy: Emergence of Trifluoromethyl Moiety as a Conformational Stabilizer and a Probe G. K. Surya Prakash, Fang Wang, Chuanfa Ni, Jingguo Shen, Ralf Haiges, Andrei K. Yudin, Thomas Mathew and George A. Olah http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja202373d/aop/images/medium/ja-2011-02373d_0006.gif Journal of the American Chemical Society DOI: 10.1021/ja202373d http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner Journal club 0 06-14-2011 02:30 AM
[NMR paper] Mutational, NMR, and NH exchange studies of the tight and selective binding of 8-oxo-
Mutational, NMR, and NH exchange studies of the tight and selective binding of 8-oxo-dGMP by the MutT pyrophosphohydrolase. Related Articles Mutational, NMR, and NH exchange studies of the tight and selective binding of 8-oxo-dGMP by the MutT pyrophosphohydrolase. Biochemistry. 2004 Mar 30;43(12):3404-14 Authors: Saraswat V, Azurmendi HF, Mildvan AS The solution structure of the ternary MutT enzyme-Mg(2+)-8-oxo-dGMP complex showed the proximity of Asn119 and Arg78 and the modified purine ring of 8-oxo-dGMP, suggesting specific roles for...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] Preparation of uniformly labeled NMR samples in Escherichia coli under the tight cont
Preparation of uniformly labeled NMR samples in Escherichia coli under the tight control of the araBAD promoter: expression of an archaeal homolog of the RNase P Rpp29 protein. Related Articles Preparation of uniformly labeled NMR samples in Escherichia coli under the tight control of the araBAD promoter: expression of an archaeal homolog of the RNase P Rpp29 protein. Protein Expr Purif. 2003 Apr;28(2):246-51 Authors: Boomershine WP, Raj ML, Gopalan V, Foster MP We report the first use of the tightly regulated araBAD promoter for generating...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] NMR structural analysis of alpha-bungarotoxin and its complex with the principal alph
NMR structural analysis of alpha-bungarotoxin and its complex with the principal alpha-neurotoxin-binding sequence on the alpha 7 subunit of a neuronal nicotinic acetylcholine receptor. Related Articles NMR structural analysis of alpha-bungarotoxin and its complex with the principal alpha-neurotoxin-binding sequence on the alpha 7 subunit of a neuronal nicotinic acetylcholine receptor. J Biol Chem. 2002 Apr 5;277(14):12406-17 Authors: Moise L, Piserchio A, Basus VJ, Hawrot E We report a new, higher resolution NMR structure of...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] 19F NMR ligand perturbation studies on 6,7-bis(trifluoromethyl)-8-ribityllumazine-7-h
19F NMR ligand perturbation studies on 6,7-bis(trifluoromethyl)-8-ribityllumazine-7-hydrates and the lumazine synthase complex of Bacillus subtilis. Site-directed mutagenesis changes the mechanism and the stereoselectivity of the catalyzed haloform-type reaction. Related Articles 19F NMR ligand perturbation studies on 6,7-bis(trifluoromethyl)-8-ribityllumazine-7-hydrates and the lumazine synthase complex of Bacillus subtilis. Site-directed mutagenesis changes the mechanism and the stereoselectivity of the catalyzed haloform-type reaction. J Org Chem. 2001 Jun...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] 15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared
15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared to those of other EF-hand proteins. Related Articles 15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared to those of other EF-hand proteins. Biochemistry. 1998 Jul 14;37(28):9964-75 Authors: Baldellon C, Alattia JR, Strub MP, Pauls T, Berchtold MW, Cavé A, Padilla A Dynamics of the rat alpha-parvalbumin calcium-loaded form have been determined by measurement of 15N nuclear relaxation using proton-detected heteronuclear NMR...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Structural features of the protoporphyrin-apomyoglobin complex: a proton NMR spectros
Structural features of the protoporphyrin-apomyoglobin complex: a proton NMR spectroscopy study. Related Articles Structural features of the protoporphyrin-apomyoglobin complex: a proton NMR spectroscopy study. Biochemistry. 1990 Dec 18;29(50):11057-67 Authors: Lecomte JT, Cocco MJ The structural properties of the complex formed by apomyoglobin and protoporphyrin IX (des-iron myoglobin) were studied to probe the influence of iron-to-histidine coordination on the native myoglobin fold and the heme binding site geometry. Standard two-dimensional...
nmrlearner Journal club 0 08-21-2010 11:04 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:26 PM.


Map