BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 10:03 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,780
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR structural comparison of the cytoplasmic juxtamembrane domains of G-protein-coupl

NMR structural comparison of the cytoplasmic juxtamembrane domains of G-protein-coupled CB1 and CB2 receptors in membrane mimetic dodecylphosphocholine micelles.

Related Articles NMR structural comparison of the cytoplasmic juxtamembrane domains of G-protein-coupled CB1 and CB2 receptors in membrane mimetic dodecylphosphocholine micelles.

J Biol Chem. 2005 Feb 4;280(5):3605-12

Authors: Xie XQ, Chen JZ

The fourth cytoplasmic domain, the so-called C-terminal juxtamembrane segment or helix VIII, has been identified in numerous G-protein-coupled receptors and exhibits unique functional characteristics. Efforts have been devoted to studying the juxtamembrane segment in order to understand the biological importance of the segment in G-protein activation of the cannabinoid CB1 and CB2 receptors. Recent biochemical data revealed that the CB1 C-terminal juxtamembrane peptide fragment CB1-(401-417) can directly activate the G-protein and also showed that the specificity of the signal transduction activation by the C-terminal juxtamembrane region is unique to the CB1 receptor but not to the CB2 receptor (Mukhopadhyay, S., and Howlett, A. C. (2001) Eur. J. Biochem. 268, 499-505). However, there is experimental work, not yet reported, on the conformational analyses and structural comparison between the respective helix VIII segments of the two receptors. In the present study, we have examined the conformational specificities of the cytoplasmic helical domains for both cannabinoid receptors. Three-dimensional structural features of two synthetic CB1 and CB2 peptides, CB1I397-G418 and CB2I298-K319, respectively, in membrane mimetic DPC micelles were studied using a combined high resolution NMR and computer modeling approach. Comparisons of the NMR-determined structures of the two peptides as well as their correspondent mutant peptides revealed their conformational properties and salt bridge dissimilarity, which might help us to understand the different structural roles of the fourth cytoplasmic helices in the function and regulation of CB1 and CB2 receptors.

PMID: 15550382 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
SSNMR dip coupl vect.png
http://upload.wikimedia.org/wikipedia/commons/a/ac/SSNMR_dip_coupl_vect.png Uploaded by user "Charlesy" on Sat, 12 Nov 2011 02:24:00 UTC Added to category on Tue, 15 Nov 2011 01:38:17 UTC Original image: 255×205 pixel; 7.623 bytes. Licensing : CC-BY-SA,GFDL SSNMR dip coupl vect.png More...
nmrlearner NMR pictures 0 11-15-2011 10:36 AM
Bacterial expression, purification, and model membrane reconstitution of the transmembrane and cytoplasmic domains of the human APP binding protein LR11/SorLA for NMR studies.
Bacterial expression, purification, and model membrane reconstitution of the transmembrane and cytoplasmic domains of the human APP binding protein LR11/SorLA for NMR studies. Bacterial expression, purification, and model membrane reconstitution of the transmembrane and cytoplasmic domains of the human APP binding protein LR11/SorLA for NMR studies. Protein Expr Purif. 2011 Feb 11; Authors: Wang X, Gill Jr RL, Zhu Q, Tian F LR11 (SorLA) is a recently identified neuronal protein that interacts with amyloid precursor protein (APP), a central player...
nmrlearner Journal club 0 02-16-2011 07:40 PM
[NMR paper] Structural rearrangements of the two domains of Azotobacter vinelandii rhodanese upon
Structural rearrangements of the two domains of Azotobacter vinelandii rhodanese upon sulfane sulfur release: essential molecular dynamics, 15N NMR relaxation and deuterium exchange on the uniformly labeled protein. Related Articles Structural rearrangements of the two domains of Azotobacter vinelandii rhodanese upon sulfane sulfur release: essential molecular dynamics, 15N NMR relaxation and deuterium exchange on the uniformly labeled protein. Int J Biol Macromol. 2003 Dec;33(4-5):193-201 Authors: Cicero DO, Melino S, Orsale M, Brancato G, Amadei A,...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Characterization of the monomeric form of the transmembrane and cytoplasmic domains o
Characterization of the monomeric form of the transmembrane and cytoplasmic domains of the integrin beta 3 subunit by NMR spectroscopy. Related Articles Characterization of the monomeric form of the transmembrane and cytoplasmic domains of the integrin beta 3 subunit by NMR spectroscopy. Biochemistry. 2002 Dec 31;41(52):15618-24 Authors: Li R, Babu CR, Valentine K, Lear JD, Wand AJ, Bennett JS, DeGrado WF We have characterized a membrane protein containing residues P688-T762 of the integrin beta3 subunit, encompassing its transmembrane and...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Structural consequences of site-directed mutagenesis in flexible protein domains: NMR
Structural consequences of site-directed mutagenesis in flexible protein domains: NMR characterization of the L(55,56)S mutant of RhoGDI. Related Articles Structural consequences of site-directed mutagenesis in flexible protein domains: NMR characterization of the L(55,56)S mutant of RhoGDI. Eur J Biochem. 2001 Apr;268(8):2253-60 Authors: Golovanov AP, Hawkins D, Barsukov I, Badii R, Bokoch GM, Lian LY, Roberts GC The guanine dissociation inhibitor RhoGDI consists of a folded C-terminal domain and a highly flexible N-terminal region, both of...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Comparison of the structural and dynamical properties of holo and apo bovine alpha-la
Comparison of the structural and dynamical properties of holo and apo bovine alpha-lactalbumin by NMR spectroscopy. Related Articles Comparison of the structural and dynamical properties of holo and apo bovine alpha-lactalbumin by NMR spectroscopy. J Mol Biol. 2001 Mar 30;307(3):885-98 Authors: Wijesinha-Bettoni R, Dobson CM, Redfield C In the presence of 0.5 M NaCl at pH 7.1, the Ca(2+)-free apo form of recombinant bovine alpha-lactalbumin (BLA) is sufficiently stabilised in its native state to give well-resolved NMR spectra at 20 degrees C....
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] NMR analysis of cbEGF domains gives new insights into the structural consequences of
NMR analysis of cbEGF domains gives new insights into the structural consequences of a P1148A substitution in fibrillin-1. Related Articles NMR analysis of cbEGF domains gives new insights into the structural consequences of a P1148A substitution in fibrillin-1. Protein Eng. 1998 Nov;11(11):957-9 Authors: Whiteman P, Downing AK, Handford PA Fibrillin-1 is a modular glycoprotein and a major component of the 10-12 nm microfibrils of the extracellular matrix. Mutations in the fibrillin-1 (FBN 1) gene result in the connective tissue disease the...
nmrlearner Journal club 0 11-17-2010 11:15 PM
[NMR paper] Structural comparison of phosphorylated and unphosphorylated forms of IIIGlc, a signa
Structural comparison of phosphorylated and unphosphorylated forms of IIIGlc, a signal-transducing protein from Escherichia coli, using three-dimensional NMR techniques. Related Articles Structural comparison of phosphorylated and unphosphorylated forms of IIIGlc, a signal-transducing protein from Escherichia coli, using three-dimensional NMR techniques. Biochemistry. 1992 Jun 9;31(22):5215-24 Authors: Pelton JG, Torchia DA, Meadow ND, Roseman S The 18.1-kDa protein IIIGlc from Escherichia coli acts as both a phosphocarrier protein in the...
nmrlearner Journal club 0 08-21-2010 11:41 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:41 PM.


Map