Related ArticlesNMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms.
Biochemistry. 1997 Jun 10;36(23):6915-29
Authors: Shimotakahara S, Rios CB, Laity JH, Zimmerman DE, Scheraga HA, Montelione GT
A three-disulfide intermediate, des-[65-72] RNase A, lacking the disulfide bond between Cys65 and Cys72, is formed in one of the rate-determining steps of the oxidative regeneration pathways of bovine pancreatic ribonuclease A (RNase A). An analog of this intermediate, [C65S, C72S] RNase A, has been characterized in terms of structure and thermodynamic stability. Triple-resonance NMR data were analyzed using an automated assignment program, AUTOASSIGN. Nearly all backbone 1H, 13C, and 15N resonances and most side-chain 13C(beta) resonances of both wild-type (wt) and [C65S, C72S] RNase A were assigned unambiguously. Analysis of NOE, 13C(alpha) chemical shift, and 3J(H(N)-H(alpha)) scalar coupling data indicates that the regular backbone structure of the major form of [C65S, C72S] RNase A is very similar to that of the major form of wt RNase A, although small structural differences are indicated in the mutation site and in spatially adjacent beta-sheet structures comprising the hydrophobic core. Thermodynamic analysis demonstrates that [C65S, C72S] RNase A (Tm of 38.5 degrees C) is significantly less stable than wt RNase A (Tm of 55.5 degrees C) at pH 4.6. Although the structural comparison of wt RNase A and this analog of an oxidative folding intermediate indicates only localized effects around the Cys65 and Cys72 sites, these thermodynamic measurements indicate that formation of the fourth disulfide bond, Cys65-Cys72, on this oxidative folding pathway results in global stabilization of the native chain fold. This conclusion is supported by comparisons of amide 1H/2H exchange rates which are significantly faster throughout the entire structure of [C65S, C72S] RNase A than in wt RNase A. More generally, our study indicates that the C65-C72 disulfide bond of RNase A contributes significantly in stabilizing the structure of the hydrophobic core of the native protein. Formation of this disulfide bond in the final step of this oxidative folding pathway provides significant stabilization of the native-like structure that is present in the corresponding three-disulfide folding intermediate.
NMR Analysis of a Kinetically Trapped Intermediate of a Disulfide-Deficient Mutant of the Starch-Binding Domain of Glucoamylase.
NMR Analysis of a Kinetically Trapped Intermediate of a Disulfide-Deficient Mutant of the Starch-Binding Domain of Glucoamylase.
NMR Analysis of a Kinetically Trapped Intermediate of a Disulfide-Deficient Mutant of the Starch-Binding Domain of Glucoamylase.
J Mol Biol. 2011 Jul 23;
Authors: Sugimoto H, Noda Y, Segawa SI
A thermally unfolded disulfide-deficient mutant of the starch-binding domain of glucoamylase refolds into a kinetically trapped metastable intermediate when subjected to a rapid lowering of temperature. We attempted to characterise...
nmrlearner
Journal club
0
08-02-2011 11:40 AM
NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond.
NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond.
NMR spectroscopic and theoretical analysis of a spontaneously formed Lys-Asp isopeptide bond.
Angew Chem Int Ed Engl. 2010 Nov 2;49(45):8421-5
Authors: Hagan RM, Björnsson R, McMahon SA, Schomburg B, Braithwaite V, Bühl M, Naismith JH, Schwarz-Linek U
nmrlearner
Journal club
0
02-15-2011 07:17 PM
[NMR paper] NMR structural characterization and computational predictions of the major intermediate in oxidative folding of leech carboxypeptidase inhibitor.
NMR structural characterization and computational predictions of the major intermediate in oxidative folding of leech carboxypeptidase inhibitor.
Related Articles NMR structural characterization and computational predictions of the major intermediate in oxidative folding of leech carboxypeptidase inhibitor.
Structure. 2005 Aug;13(8):1193-202
Authors: Arolas JL, D'Silva L, Popowicz GM, Aviles FX, Holak TA, Ventura S
The III-A intermediate constitutes the major rate-determining step in the oxidative folding of leech carboxypeptidase inhibitor...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] NMR-based binding screen and structural analysis of the complex formed between alpha-
NMR-based binding screen and structural analysis of the complex formed between alpha-cobratoxin and an 18-mer cognate peptide derived from the alpha 1 subunit of the nicotinic acetylcholine receptor from Torpedo californica.
Related Articles NMR-based binding screen and structural analysis of the complex formed between alpha-cobratoxin and an 18-mer cognate peptide derived from the alpha 1 subunit of the nicotinic acetylcholine receptor from Torpedo californica.
J Biol Chem. 2002 Oct 4;277(40):37439-45
Authors: Zeng H, Hawrot E
The alpha18-mer...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] NMR structural analysis of an analog of an intermediate formed in the rate-determinin
NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and mutant forms.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance...
nmrlearner
Journal club
0
08-22-2010 03:31 PM
[NMR paper] NMR studies of an FK-506 analog, [U-13C]ascomycin, bound to FK-506-binding protein.
NMR studies of an FK-506 analog, ascomycin, bound to FK-506-binding protein.
Related Articles NMR studies of an FK-506 analog, ascomycin, bound to FK-506-binding protein.
J Med Chem. 1992 Jun 26;35(13):2467-73
Authors: Petros AM, Gemmecker G, Neri P, Olejniczak ET, Nettesheim D, Xu RX, Gubbins EG, Smith H, Fesik SW
Multidimensional, heteronuclear NMR methods were used to determine the complete 1H and 13C resonance assignments for ascomycin bound to recombinant FKBP, including stereospecific assignment of all 22 methylene protons. The...