The growth of the biological nuclear magnetic resonance (NMR) field and the development of new experimental technology have mandated the revision and enlargement of the NMR-STAR ontology used to represent experiments, spectral and derived data, and supporting metadata. We present here a brief description of the NMR-STAR ontology and software tools for manipulating NMR-STAR data files, editing the files, extracting selected data, and creating data visualizations. Detailed information on these is accessible from the links provided.
[NMR paper] Comprehensive analysis of NMR data using advanced line shape fitting.
Comprehensive analysis of NMR data using advanced line shape fitting.
Related Articles Comprehensive analysis of NMR data using advanced line shape fitting.
J Biomol NMR. 2017 Oct 17;:
Authors: Niklasson M, Otten R, Ahlner A, Andresen C, Schlagnitweit J, Petzold K, Lundström P
Abstract
NMR spectroscopy is uniquely suited for atomic resolution studies of biomolecules such as proteins, nucleic acids and metabolites, since detailed information on structure and dynamics are encoded in positions and line shapes of peaks in NMR...
nmrlearner
Journal club
0
10-19-2017 10:47 PM
Comprehensive analysis of NMR data using advanced line shape fitting
Comprehensive analysis of NMR data using advanced line shape fitting
Abstract
NMR spectroscopy is uniquely suited for atomic resolution studies of biomolecules such as proteins, nucleic acids and metabolites, since detailed information on structure and dynamics are encoded in positions and line shapes of peaks in NMR spectra. Unfortunately, accurate determination of these parameters is often complicated and time consuming, in part due to the need for different software at the various analysis steps and for validating the results. Here, we present an...
nmrlearner
Journal club
0
10-17-2017 10:19 AM
Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging #DNPNMR
From The DNP-NMR Blog:
Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Hyodo, F., et al., Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging. Anal Chem, 2014. 86(15): p. 7234-8.
https://www.ncbi.nlm.nih.gov/pubmed/25036767