BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-23-2021, 07:56 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR Spin Relaxation Theory of Biomolecules Undergoing Highly Asymmetric Exchange with Large Interaction Partners

NMR Spin Relaxation Theory of Biomolecules Undergoing Highly Asymmetric Exchange with Large Interaction Partners

The transient interactions of proteins and other molecules with much larger structures, such as synthetic or biological nanoparticles, lead to certain types of enhanced nuclear magnetic resonance (NMR) spin relaxation effects, which can be accurately measured by multidimensional solution NMR techniques. These relaxation effects provide new information about the nanostructures and the protein, their interactions, internal dynamics, and associated kinetic and thermodynamic parameters, such as...

More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment.
Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment. Fragment-Based Approach for the Evaluation of NMR Chemical Shifts for Large Biomolecules Incorporating the Effects of the Solvent Environment. J Chem Theory Comput. 2017 Feb 14;: Authors: Jose KV, Raghavachari K Abstract We present an efficient implementation of the molecules-in-molecules (MIM) fragment-based quantum chemical method for the evaluation of NMR chemical shifts of large...
nmrlearner Journal club 0 02-15-2017 03:40 PM
bcTol: a highly water-soluble biradical for efficient dynamic nuclear polarization of biomolecules
From The DNP-NMR Blog: bcTol: a highly water-soluble biradical for efficient dynamic nuclear polarization of biomolecules Jagtap, A.P., et al., bcTol: a highly water-soluble biradical for efficient dynamic nuclear polarization of biomolecules. Chem Commun (Camb), 2016. 52(43): p. 7020-3. http://www.ncbi.nlm.nih.gov/pubmed/27161650
nmrlearner News from NMR blogs 0 07-29-2016 03:01 PM
[NMR paper] Molecular Level Insights on Collagen-Polyphenols Interaction using Spin-Relaxation and Saturation Transfer Difference NMR.
Molecular Level Insights on Collagen-Polyphenols Interaction using Spin-Relaxation and Saturation Transfer Difference NMR. Related Articles Molecular Level Insights on Collagen-Polyphenols Interaction using Spin-Relaxation and Saturation Transfer Difference NMR. J Phys Chem B. 2015 Oct 8; Authors: Reddy RR, Phani Kumar BV, Shanmugam G, Madhan B, Mandal AB Abstract Interaction of small molecules with collagen has far reaching consequences in biological and industrial processes. The interaction between collagen and selected...
nmrlearner Journal club 0 10-09-2015 04:49 PM
Structural factors controlling the spin-spin exchange coupling: EPR spectroscopic studies of highly asymmetric trityl-nitroxide biradicals
From The DNP-NMR Blog: Structural factors controlling the spin-spin exchange coupling: EPR spectroscopic studies of highly asymmetric trityl-nitroxide biradicals Liu, Y., et al., Structural factors controlling the spin-spin exchange coupling: EPR spectroscopic studies of highly asymmetric trityl-nitroxide biradicals. J Am Chem Soc, 2013. 135(6): p. 2350-6. http://www.ncbi.nlm.nih.gov/pubmed/23320522
nmrlearner News from NMR blogs 0 03-03-2014 04:55 PM
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange Abstract Although originally designed for broadband inversion and decoupling in NMR spectroscopy, recent methodological developments have introduced adiabatic fast passage (AFP) pulses into the field of protein dynamics. AFP pulses employ a frequency sweep, and have not only superior inversion properties with respect to offset effects, but they are also easily implemented into a pulse sequence. As magnetization is dragged from the +z to...
nmrlearner Journal club 0 09-30-2011 08:01 PM
Relaxation theory of nuclear singlet states in two spin-1/2 systems
Relaxation theory of nuclear singlet states in two spin-1/2 systems Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 56, Issue 3, April 2010, Pages 217-231</br> Giuseppe*Pileio</br> More...
nmrlearner Journal club 0 09-13-2011 09:15 PM
TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins
TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins Abstract A TROSY-selected ZZ-exchange experiment is described for measuring slow chemical exchange rates by monitoring the TROSY component of 15N longitudinal magnetization. Application of the proposed pulse sequence to the cadherin 8 N-terminal extracelluar domain demonstrates that enhanced sensitivity is obtained, compared to a previously described TROSY-detected ZZ-exchange sequence (Sahu et al. J Am Chem Soc 129: 13232â??13237, 2007), by preserving the TROSY effect during the mixing...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Practical methods for solid-state NMR distance measurements on large biomolecules: co
Practical methods for solid-state NMR distance measurements on large biomolecules: constant-time rotational resonance. Related Articles Practical methods for solid-state NMR distance measurements on large biomolecules: constant-time rotational resonance. J Magn Reson. 1999 Aug;139(2):371-6 Authors: Balazs YS, Thompson LK Simple modifications of the rotational resonance experiment substantially reduce the total experimental time needed to measure weak homonuclear dipolar couplings, a critical factor for achieving routine internuclear distance...
nmrlearner Journal club 0 11-18-2010 08:31 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:04 PM.


Map