Related ArticlesNMR Spectroscopy on Domain Dynamics in Biomacromolecules.
Prog Biophys Mol Biol. 2013 May 15;
Authors: Shapiro YE
Abstract
Domain dynamics in biomacromolecules is currently an area of intense research because of its importance for understanding the huge quantity of available data relating the structure and function of proteins and nucleic acids. Control of structural flexibility is essential for the proper functioning of the biomacromolecules. Biophysical discoveries as well as computational algorithms and databases have reshaped our understanding of the often spectacular domain dynamics. At the residue level, such flexibility occurs due to local relaxation of peptide bond angles whose cumulative effect results in large changes in the secondary, tertiary or quaternary structures. The flexibility, or its absence, most often depends on the nature of interdomain linkages. Both the flexible and relatively rigid linkers are found in many multidomain biomacromolecules. Large-scale structural heterogeneity of multidomain biomacromolecules and their complexes is now seen as the norm rather than the exception. Absence of such motion, as in the so-called molecular rulers, also has desirable functional effects in architecture of biomacromolecules. The contemporary methods of NMR spectroscopy are capable to provide the detailed information on domain motions in biomacromolecules in the wide range of timescales related to the timescales of their functioning. We review here the current point of view on the nature of domain motions based on these last achievements in the field of NMR spectroscopy. Experimental and theoretical aspects of the collective intra- and interdomain motions are considered.
PMID: 23684958 [PubMed - as supplied by publisher]
[NMR paper] NMR dynamics study of the Z-DNA binding domain of human ADAR1 bound to various DNA duplexes.
NMR dynamics study of the Z-DNA binding domain of human ADAR1 bound to various DNA duplexes.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR dynamics study of the Z-DNA binding domain of human ADAR1 bound to various DNA duplexes.
Biochem Biophys Res Commun. 2012 Nov 9;428(1):137-41
Authors: Lee AR, Kim HE, Lee YM, Jeong M, Choi KH, Park JW, Choi YG, Ahn HC, Choi BS, Lee JH
Abstract
The Z-DNA binding domain of human ADAR1 (Z?(ADAR1))...
nmrlearner
Journal club
0
03-27-2013 03:33 PM
[NMR paper] Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation.
From Mendeley Biomolecular NMR group:
Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation.
Biochemistry (1994). Volume: 33, Issue: 19. Pages: 5984-6003. N a Farrow, R Muhandiram, a U Singer, S M Pascal, C M Kay, G Gish, S E Shoelson, T Pawson, J D Forman-Kay, L E Kay et al.
The backbone dynamics of the C-terminal SH2 domain of phospholipase C gamma 1 have been investigated. Two forms of the domain were studied, one in complex with a high-affinity binding peptide derived from the platelet-derived growth factor receptor and the...
nmrlearner
Journal club
0
03-01-2013 05:20 PM
[NMR paper] Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation.
From Mendeley Biomolecular NMR group:
Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation.
Biochemistry (1994). Volume: 33, Issue: 19. Pages: 5984-6003. N a Farrow, R Muhandiram, a U Singer, S M Pascal, C M Kay, G Gish, S E Shoelson, T Pawson, J D Forman-Kay, L E Kay et al.
The backbone dynamics of the C-terminal SH2 domain of phospholipase C gamma 1 have been investigated. Two forms of the domain were studied, one in complex with a high-affinity binding peptide derived from the platelet-derived growth factor receptor and the...
nmrlearner
Journal club
0
11-22-2012 11:49 AM
[NMR paper] Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation.
From Mendeley Biomolecular NMR group:
Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation.
Biochemistry (1994). Volume: 33, Issue: 19. Pages: 5984-6003. N a Farrow, R Muhandiram, a U Singer, S M Pascal, C M Kay, G Gish, S E Shoelson, T Pawson, J D Forman-Kay, L E Kay et al.
The backbone dynamics of the C-terminal SH2 domain of phospholipase C gamma 1 have been investigated. Two forms of the domain were studied, one in complex with a high-affinity binding peptide derived from the platelet-derived growth factor receptor and the...
nmrlearner
Journal club
0
10-12-2012 09:58 AM
[NMR paper] Solid-state NMR and rigid body molecular dynamics to determine domain orientations of
Solid-state NMR and rigid body molecular dynamics to determine domain orientations of monomeric phospholamban.
Related Articles Solid-state NMR and rigid body molecular dynamics to determine domain orientations of monomeric phospholamban.
J Am Chem Soc. 2002 Aug 14;124(32):9392-3
Authors: Mascioni A, Karim C, Zamoon J, Thomas DD, Veglia G
Solid-state NMR spectroscopy, in conjunction with rigid body molecular dynamics calculations, shows that monomeric phospholamban in lipid bilayers has two distinct helical domains, with an interhelical angle...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] NMR solution structure and dynamics of the peptidyl-prolyl cis-trans isomerase domain
NMR solution structure and dynamics of the peptidyl-prolyl cis-trans isomerase domain of the trigger factor from Mycoplasma genitalium compared to FK506-binding protein.
Related Articles NMR solution structure and dynamics of the peptidyl-prolyl cis-trans isomerase domain of the trigger factor from Mycoplasma genitalium compared to FK506-binding protein.
J Mol Biol. 2002 May 10;318(4):1097-115
Authors: Vogtherr M, Jacobs DM, Parac TN, Maurer M, Pahl A, Saxena K, Rüterjans H, Griesinger C, Fiebig KM
We have solved the solution structure of the...
nmrlearner
Journal club
0
11-24-2010 08:49 PM
[NMR paper] Backbone dynamics of a bacterially expressed peptide from the receptor binding domain
Backbone dynamics of a bacterially expressed peptide from the receptor binding domain of Pseudomonas aeruginosa pilin strain PAK from heteronuclear 1H-15N NMR spectroscopy.
Related Articles Backbone dynamics of a bacterially expressed peptide from the receptor binding domain of Pseudomonas aeruginosa pilin strain PAK from heteronuclear 1H-15N NMR spectroscopy.
J Biomol NMR. 2000 Jul;17(3):239-55
Authors: Campbell AP, Spyracopoulos L, Irvin RT, Sykes BD
The backbone dynamics of a 15N-labeled recombinant PAK pilin peptide spanning residues...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] Backbone dynamics of the A-domain of HMG1 as studied by 15N NMR spectroscopy.
Backbone dynamics of the A-domain of HMG1 as studied by 15N NMR spectroscopy.
Related Articles Backbone dynamics of the A-domain of HMG1 as studied by 15N NMR spectroscopy.
Biochemistry. 1995 Dec 26;34(51):16608-17
Authors: Broadhurst RW, Hardman CH, Thomas JO, Laue ED
The HMG-box sequence motif (approximately 80 residues) occurs in a number of abundant eukaryotic chromosomal proteins such as HMG1, which binds DNA without sequence specificity, but with "structure specificity", as well as in several sequence-specific transcription factors. HMG1...