BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-17-2010, 03:36 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR spectroscopy and computational analysis of interaction between Serratia marcescen

NMR spectroscopy and computational analysis of interaction between Serratia marcescens chitinase B and a dipeptide derived from natural-product cyclopentapeptide chitinase inhibitor argifin.

Related Articles NMR spectroscopy and computational analysis of interaction between Serratia marcescens chitinase B and a dipeptide derived from natural-product cyclopentapeptide chitinase inhibitor argifin.

Bioorg Med Chem. 2010 Aug 15;18(16):5835-5844

Authors: Gouda H, Sunazuka T, Hirose T, Iguchi K, Yamaotsu N, Sugawara A, Noguchi Y, Saito Y, Yamamoto T, Watanabe T, Shiomi K, Omura S, Hirono S

The dipeptide N-acetyl-Arg{N(omega)-(N-methylcarbamoyl)}-N-methyl-Phe(2), which is a part of the natural-product cyclopentapeptide chitinase inhibitor argifin (1), inhibits chitinase B from Serratia marcescens (SmChiB) with a half-maximal inhibitory concentration (IC(50)) of 3.7muM. Despite the relatively small size of 2, its inhibitory activity is comparable with that of 1 (IC(50)=6.4muM). To elucidate the basis for this interesting phenomenon, we investigated the interaction between 2 and SmChiB using a combination of nuclear magnetic resonance spectroscopy and computational methods. The transferred nuclear Overhauser effect (TRNOE) experiment obtained structural information on the SmChiB-bound conformation of 2. The binding mode of 2 and SmChiB was modeled by the novel molecular-docking approach proposed in our laboratory, which can explicitly consider water-mediated hydrogen-bonding interactions in protein-ligand interfaces. The SmChiB-bound conformation of 2 in the resulting model satisfied all proton-proton distance constraints derived from the TRNOE experiment, indicating that our model structure of the 2-SmChiB complex is reasonable. A molecular dynamics (MD) simulation examined the stability of the resultant complex structure and suggested that 2 binds to SmChiB in a similar fashion to the binding mode observed for N(omega)-(N-methylcarbamoyl)-Arg(1) and N-methyl-Phe(2) of 1 in the crystal structure of the argifin-SmChiB complex. Finally, the binding free energies of 1 and 2 with SmChiB were estimated by the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method using the MD trajectory. The MM-PBSA calculation suggested that both 1 and 2 bind to SmChiB with similar affinities, which is consistent with their experimental IC(50) values. Energetic analysis revealed that the van der Waals interaction of 2 with SmChiB is much less than that of 1, but is completely compensated by the more favorable contribution of solute entropy and the total electrostatic component. The improved total electrostatic component was derived from more favorable electrostatic interactions. Therefore, we conclude that dipeptide 2 was also better optimized against SmChiB than 1 in an electrostatic point of view.

PMID: 20667742 [PubMed - as supplied by publisher]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Insights into the interaction of discodermolide and docetaxel with tubulin. Mapping the binding sites of microtubule-stabilizing agents by using an integrated NMR and computational approach.
Insights into the interaction of discodermolide and docetaxel with tubulin. Mapping the binding sites of microtubule-stabilizing agents by using an integrated NMR and computational approach. Insights into the interaction of discodermolide and docetaxel with tubulin. Mapping the binding sites of microtubule-stabilizing agents by using an integrated NMR and computational approach. ACS Chem Biol. 2011 May 3; Authors: Canales A, R Salarichs J, Trigili C, Nieto L, Coderch C, Andreu JM, Paterson I, Jimenez-Barbero J, Díaz Pereira JF The binding...
nmrlearner Journal club 0 05-06-2011 02:00 AM
Mapping allostery through the covariance analysis of NMR chemical shifts [Biophysics and Computational Biology]
Mapping allostery through the covariance analysis of NMR chemical shifts Selvaratnam, R., Chowdhury, S., VanSchouwen, B., Melacini, G.... Date: 2011-04-12 Allostery is a fundamental mechanism of regulation in biology. The residues at the end points of long-range allosteric perturbations are commonly identified by the comparative analyses of structures and dynamics in apo and effector-bound states. However, the networks of interactions mediating the propagation of allosteric signals between the end points often remain elusive. Here we show that the covariance analysis of NMR chemical...
nmrlearner Journal club 0 04-13-2011 01:15 AM
NMR analysis of the {alpha}IIb{beta}3 cytoplasmic interaction suggests a mechanism for integrin regulation.
NMR analysis of the {alpha}IIb{beta}3 cytoplasmic interaction suggests a mechanism for integrin regulation. NMR analysis of the {alpha}IIb{beta}3 cytoplasmic interaction suggests a mechanism for integrin regulation. Proc Natl Acad Sci U S A. 2010 Dec 14; Authors: Metcalf DG, Moore DT, Wu Y, Kielec JM, Molnar K, Valentine KG, Wand AJ, Bennett JS, Degrado WF The integrin ?IIb?3 is a transmembrane (TM) heterodimeric adhesion receptor that exists in equilibrium between resting and active ligand binding conformations. In resting ?IIb?3, the TM and...
nmrlearner Journal club 0 12-16-2010 09:21 PM
Integrated Computational Approach to the Analysis of NMR Relaxation in Proteins: Application to ps-ns Main Chain (15)N-(1)H and Global Dynamics of the Rho GTPase Binding Domain of Plexin-B1.
Integrated Computational Approach to the Analysis of NMR Relaxation in Proteins: Application to ps-ns Main Chain (15)N-(1)H and Global Dynamics of the Rho GTPase Binding Domain of Plexin-B1. Integrated Computational Approach to the Analysis of NMR Relaxation in Proteins: Application to ps-ns Main Chain (15)N-(1)H and Global Dynamics of the Rho GTPase Binding Domain of Plexin-B1. J Phys Chem B. 2010 Dec 10; Authors: Zerbetto M, Buck M, Meirovitch E, Polimeno A
nmrlearner Journal club 0 12-15-2010 12:03 PM
[NMR paper] Theoretical and computational advances in biomolecular NMR spectroscopy.
Theoretical and computational advances in biomolecular NMR spectroscopy. Related Articles Theoretical and computational advances in biomolecular NMR spectroscopy. Curr Opin Struct Biol. 2002 Apr;12(2):146-53 Authors: Clore GM, Schwieters CD Recent developments in experimental and computational aspects of NMR spectroscopy have had a significant impact on the accuracy and speed of macromolecular structure determination in solution, particularly with regard to systems of high complexity (such as protein complexes). These include experiments...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] NMR analysis of the interaction between protein L and Ig light chains.
NMR analysis of the interaction between protein L and Ig light chains. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR analysis of the interaction between protein L and Ig light chains. J Mol Biol. 1997 Jul 4;270(1):8-13 Authors: Enokizono J, Wikström M, Sjöbring U, Björck L, Forsén S, Arata Y, Kato K, Shimada I Protein L is a cell wall protein expressed by some strains of the anaerobic bacterial species Peptostreptococcus magnus. It binds to immunoglobulin...
nmrlearner Journal club 0 08-22-2010 05:08 PM
[NMR paper] Molecular dynamics-derived conformation and intramolecular interaction analysis of th
Molecular dynamics-derived conformation and intramolecular interaction analysis of the N-acetyl-9-O-acetylneuraminic acid-containing ganglioside GD1a and NMR-based analysis of its binding to a human polyclonal immunoglobulin G fraction with selectivity for O-acetylated sialic acids. Related Articles Molecular dynamics-derived conformation and intramolecular interaction analysis of the N-acetyl-9-O-acetylneuraminic acid-containing ganglioside GD1a and NMR-based analysis of its binding to a human polyclonal immunoglobulin G fraction with selectivity for O-acetylated sialic acids. ...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin.
NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin. Related Articles NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin. J Biomol NMR. 1999 Jul;14(3):203-7 Authors: Hazzard J, Südhof TC, Rizo J Synaptobrevin is a synaptic vesicle protein that has an essential role in exocytosis and forms the SNARE complex with syntaxin and SNAP-25. We have analyzed the structure of isolated synaptobrevin and its binary interaction with syntaxin using NMR spectroscopy. Our results demonstrate...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:03 PM.


Map