BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-17-2010, 11:06 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and c

NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins.

Related Articles NMR spectroscopy of alpha-crystallin. Insights into the structure, interactions and chaperone action of small heat-shock proteins.

Int J Biol Macromol. 1998 May-Jun;22(3-4):197-209

Authors: Carver JA, Lindner RA

The subunit molecular mass of alpha-crystallin, like many small heat-shock proteins (sHsps), is around 20 kDa although the protein exists as a large aggregate of average mass around 800 kDa. Despite this large size, a well-resolved 1H NMR spectrum is observed for alpha-crystallin which arises from short, polar, highly-flexible and solvent-exposed C-terminal extensions in each of the subunits, alpha A- and alpha B-crystallin. These extensions are not involved in interactions with other proteins (e.g. beta- and gamma-crystallins) under non-chaperone conditions. As determined by NMR studies on mutants of alpha A-crystallin with alterations in its C-terminal extension, the extensions have an important role in acting as solubilising agents for the relatively-hydrophobic alpha-crystallin molecule and the high-molecular-weight (HMW) complex that forms during the chaperone action. The related sHsp, Hsp25, also exhibits a flexible C-terminal extension. Under chaperone conditions, and in the HMW complex isolated from old lenses, the C-terminal extension of the alpha A-crystallin subunit maintains its flexibility whereas the alpha B-crystallin subunit loses, at least partially, its flexibility, implying that it is involved in interaction with the 'substrate' protein. The conformation of 'substrate' proteins when they interact with alpha-crystallin has been probed by 1H NMR spectroscopy and it is concluded that alpha-crystallin interacts with 'substrate' proteins that are in a disordered molten globule state, but only when this state is on its way to large-scale aggregation and precipitation. By monitoring the 1H and 31P NMR spectra of alpha-crystallin in the presence of increasing concentrations of urea, it is proposed that alpha-crystallin adopts a two-domain structure with the larger C-terminal domain unfolding first in the presence of denaturant. All these data have been combined into a model for the quaternary structure of alpha-crystallin. The model has two layers each of approximately 40 subunits arranged in an annulus or toroid. A large central cavity is present whose entrance is ringed by the flexible C-terminal extensions. A large hydrophobic region in the aggregate is exposed to solution and is available for interaction with 'substrate' proteins during the chaperone action.

PMID: 9650074 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Structure and Dynamicsof Mycobacterium tuberculosis Truncated HemoglobinN: Insights from NMR Spectroscopy and MolecularDynamics Simulations
Structure and Dynamicsof Mycobacterium tuberculosis Truncated HemoglobinN: Insights from NMR Spectroscopy and MolecularDynamics Simulations http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi201059a/aop/images/medium/bi-2011-01059a_0006.gif Biochemistry DOI: 10.1021/bi201059a http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/sSrnnNxPk8g More...
nmrlearner Journal club 0 12-02-2011 02:31 PM
Solution NMR Insights into Docking Interactions Involving Inactive ERK2.
Solution NMR Insights into Docking Interactions Involving Inactive ERK2. Solution NMR Insights into Docking Interactions Involving Inactive ERK2. Biochemistry. 2011 Mar 30; Authors: Piserchio A, Warthaka M, Devkota AK, Kaoud TS, Lee S, Abramczyk O, Ren P, Dalby KN, Ghose R The mitogen activated protein (MAP) kinase ERK2 contains recruitment sites that engage canonical and non-canonical motifs found in a variety of upstream kinases, regulating phosphatases and downstream targets. Interactions involving two of these sites, the D-recruitment site...
nmrlearner Journal club 0 04-01-2011 03:51 PM
[NMR paper] NMR structure of the alpha-hemoglobin stabilizing protein: insights into conformation
NMR structure of the alpha-hemoglobin stabilizing protein: insights into conformational heterogeneity and binding. Related Articles NMR structure of the alpha-hemoglobin stabilizing protein: insights into conformational heterogeneity and binding. J Biol Chem. 2004 Aug 13;279(33):34963-70 Authors: Santiveri CM, Pérez-Cañadillas JM, Vadivelu MK, Allen MD, Rutherford TJ, Watkins NA, Bycroft M The structure of alpha-hemoglobin stabilizing protein (AHSP), a molecular chaperone for free alpha-hemoglobin, has been determined using NMR spectroscopy....
nmrlearner Journal club 0 11-24-2010 09:51 PM
[NMR paper] Insights into the interactions between a drug and a membrane protein target by fluori
Insights into the interactions between a drug and a membrane protein target by fluorine cross-polarization magic angle spinning NMR. Related Articles Insights into the interactions between a drug and a membrane protein target by fluorine cross-polarization magic angle spinning NMR. Magn Reson Chem. 2004 Feb;42(2):204-11 Authors: Boland MP, Middleton DA The fluorinated anti-psychotic drug trifluoperazine (TFP) has been shown to be a K(+)-competitive inhibitor of gastric H(+)/K(+)-ATPase, a membrane-embedded therapeutic target for peptic ulcer...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] New structural insights into carbohydrate-protein interactions from NMR spectroscopy.
New structural insights into carbohydrate-protein interactions from NMR spectroscopy. Related Articles New structural insights into carbohydrate-protein interactions from NMR spectroscopy. Curr Opin Struct Biol. 2003 Oct;13(5):646-53 Authors: Kogelberg H, Solís D, Jiménez-Barbero J Recently developed NMR methods have been applied to discover carbohydrate ligands for proteins and to identify their binding epitopes. The structural details of carbohydrate-protein complexes have also been examined by NMR, providing site-specific information on the...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] NMR investigations of protein-carbohydrate interactions: insights into the topology o
NMR investigations of protein-carbohydrate interactions: insights into the topology of the bound conformation of a lactose isomer and beta-galactosyl xyloses to mistletoe lectin and galectin-1. Related Articles NMR investigations of protein-carbohydrate interactions: insights into the topology of the bound conformation of a lactose isomer and beta-galactosyl xyloses to mistletoe lectin and galectin-1. Biochim Biophys Acta. 2001 Dec 19;1568(3):225-36 Authors: Alonso-Plaza JM, Canales MA, Jiménez M, Roldán JL, García-Herrero A, Iturrino L, Asensio JL,...
nmrlearner Journal club 0 11-19-2010 08:44 PM
[NMR paper] 1H-NMR spectroscopy of beta B2-crystallin from bovine eye lens. Conformation of the N
1H-NMR spectroscopy of beta B2-crystallin from bovine eye lens. Conformation of the N- and C-terminal extensions. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H-NMR spectroscopy of beta B2-crystallin from bovine eye lens. Conformation of the N- and C-terminal extensions. Eur J Biochem. 1993 Apr 1;213(1):313-20 Authors: Carver JA, Cooper PG, Truscott RJ 1H-NMR spectroscopic studies of a 46-kDa homodimer, beta B2-crystallin,...
nmrlearner Journal club 0 08-21-2010 11:53 PM
[NMR paper] Probing the structure and interactions of crystallin proteins by NMR spectroscopy.
Probing the structure and interactions of crystallin proteins by NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Probing the structure and interactions of crystallin proteins by NMR spectroscopy. Prog Retin Eye Res. 1999 Jul;18(4):431-62 Authors: Carver JA The lens is composed primarily of proteins, the crystallins, at high concentration whose structure and interactions are responsible for lens transparency. As there is no protein turnover in the...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:56 PM.


Map