BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-18-2010, 09:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR solution structure of the theta subunit of DNA polymerase III from Escherichia co

NMR solution structure of the theta subunit of DNA polymerase III from Escherichia coli.

Related Articles NMR solution structure of the theta subunit of DNA polymerase III from Escherichia coli.

Protein Sci. 2000 Apr;9(4):721-33

Authors: Keniry MA, Berthon HA, Yang JY, Miles CS, Dixon NE

The catalytic core of Escherichia coli DNA polymerase III contains three tightly associated subunits (alpha, epsilon, and theta). The theta subunit is the smallest, but the least understood of the three. As a first step in a program aimed at understanding its function, the structure of the theta subunit has been determined by triple-resonance multidimensional NMR spectroscopy. Although only a small protein, theta was difficult to assign fully because approximately one-third of the protein is unstructured, and some sections of the remaining structured parts undergo intermediate intramolecular exchange. The secondary structure was deduced from the characteristic nuclear Overhauser effect patterns, the 3J(HN alpha) coupling constants and the consensus chemical shift index. The C-terminal third of the protein, which has many charged and hydrophilic amino acid residues, has no well-defined secondary structure and exists in a highly dynamic state. The N-terminal two-thirds has three helical segments (Gln10-Asp19, Glu38-Glu43, and His47-Glu54), one short extended segment (Pro34-Ala37), and a long loop (Ala20-Glu29), of which part may undergo intermediate conformational exchange. Solution of the three-dimensional structure by NMR techniques revealed that the helices fold in such a way that the surface of theta is bipolar, with one face of the protein containing most of the acidic residues and the other face containing most of the long chain basic residues. Preliminary chemical shift mapping experiments with a domain of the epsilon subunit have identified a loop region (Ala20-Glu29) in theta as the site of association with epsilon.

PMID: 10794414 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase. NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase. J Bioenerg Biomembr. 2011 Mar 12; Authors: Rishikesan S, Thaker YR, Grüber G The N-terminus of V-ATPase subunit E has been shown to associate with the subunits C, G and H, respectively. To understand the assembly of E with its neighboring subunits as well as its N-terminal structure, the N-terminal region, E(1-69), of the...
nmrlearner Journal club 0 03-15-2011 04:06 PM
[NMR paper] NMR structure of a complex containing the TFIIF subunit RAP74 and the RNA polymerase
NMR structure of a complex containing the TFIIF subunit RAP74 and the RNA polymerase II carboxyl-terminal domain phosphatase FCP1. Related Articles NMR structure of a complex containing the TFIIF subunit RAP74 and the RNA polymerase II carboxyl-terminal domain phosphatase FCP1. Proc Natl Acad Sci U S A. 2003 May 13;100(10):5688-93 Authors: Nguyen BD, Abbott KL, Potempa K, Kobor MS, Archambault J, Greenblatt J, Legault P, Omichinski JG FCP1 is the only identified phosphatase specific for the phosphorylated CTD of RNA polymerase II (RNAP II)....
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Elucidation of the epsilon-theta subunit interface of Escherichia coli DNA polymerase
Elucidation of the epsilon-theta subunit interface of Escherichia coli DNA polymerase III by NMR spectroscopy. Related Articles Elucidation of the epsilon-theta subunit interface of Escherichia coli DNA polymerase III by NMR spectroscopy. Biochemistry. 2003 Apr 8;42(13):3635-44 Authors: DeRose EF, Darden T, Harvey S, Gabel S, Perrino FW, Schaaper RM, London RE The DNA polymerase III holoenzyme (HE) is the primary replicative polymerase of Escherichia coli. The epsilon (epsilon) subunit of HE provides the 3'-->5' exonucleolytic proofreading...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I fro
Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I from Synechocystis sp. PCC 6803. Related Articles Solution NMR structure and backbone dynamics of the PsaE subunit of photosystem I from Synechocystis sp. PCC 6803. Biochemistry. 2002 Nov 26;41(47):13902-14 Authors: Barth P, Savarin P, Gilquin B, Lagoutte B, Ochsenbein F PsaE is a small peripheral subunit of photosystem I (PSI) that is very accessible to the surrounding medium. It plays an essential role in optimizing the interactions with the soluble electron...
nmrlearner Journal club 0 11-24-2010 08:58 PM
Solution structure of subunit F (Vma7p) of the eukaryotic V(1)V(O) ATPase from Saccha
Solution structure of subunit F (Vma7p) of the eukaryotic V(1)V(O) ATPase from Saccharomyces cerevesiae derived from SAXS and NMR spectroscopy. Solution structure of subunit F (Vma7p) of the eukaryotic V(1)V(O) ATPase from Saccharomyces cerevesiae derived from SAXS and NMR spectroscopy. Biochim Biophys Acta. 2010 Sep 11; Authors: Basak S, Gayen S, Thaker YR, Manimekalai MS, Roessle M, Hunke C, Grüber G Vacuolar ATPases uses the energy derived from ATP hydrolysis, catalyzed in the A(3)B(3) sector of the V(1) ATPase to pump protons via the...
nmrlearner Journal club 0 09-16-2010 02:59 PM
[NMR paper] 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containin
1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II). Related Articles 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II). Arch Biochem Biophys. 1991 Dec;291(2):307-10 Authors: Panth H, Brenner MC, Wu FY The DNA-dependent RNA polymerase containing two intrinsic cobalt ions (Co2-RPase) instead of the naturally occurring zinc was purified from Escherichia coli cells grown in zinc-depleted, cobalt-enriched media....
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containin
1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II). Related Articles 1H NMR study of the interaction of ATP with Escherichia coli RNA polymerase containing in vivo-incorporated Co(II). Arch Biochem Biophys. 1991 Dec;291(2):307-10 Authors: Panth H, Brenner MC, Wu FY The DNA-dependent RNA polymerase containing two intrinsic cobalt ions (Co2-RPase) instead of the naturally occurring zinc was purified from Escherichia coli cells grown in zinc-depleted, cobalt-enriched media....
nmrlearner Journal club 0 08-21-2010 11:12 PM
[NMR paper] A preliminary CD and NMR study of the Escherichia coli DNA polymerase III theta subun
A preliminary CD and NMR study of the Escherichia coli DNA polymerase III theta subunit. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_120x27.gif Related Articles A preliminary CD and NMR study of the Escherichia coli DNA polymerase III theta subunit. Proteins. 1999 Jul 1;36(1):111-6 Authors: Li D, Allen DL, Harvey S, Perrino FW, Schaaper RM, London RE The theta subunit of DNA polymerase III, the main replicative polymerase of Escherichia coli, has been...
nmrlearner Journal club 0 08-21-2010 04:03 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:25 PM.


Map