Related ArticlesNMR solution structure of the isolated Apo Pin1 WW domain: comparison to the x-ray crystal structures of Pin1.
Biopolymers. 2002 Feb;63(2):111-21
Authors: Kowalski JA, Liu K, Kelly JW
The NMR solution structure of the isolated Apo Pin1 WW domain (6-39) reveals that it adopts a twisted three-stranded antiparallel beta-sheet conformation, very similar to the structure exhibited by the crystal of this domain in the context of the two domain Pin1 protein. While the B factors in the apo x-ray crystal structure indicate that loop 1 and loop 2 are conformationally well defined, the solution NMR data suggest that loop 1 is quite flexible, at least in the absence of the ligand. The NMR chemical shift and nuclear Overhauser effect pattern exhibited by the 6-39 Pin1 WW domain has proven to be diagnostic for demonstrating that single site variants of this domain adopt a normally folded structure. Knowledge of this type is critical before embarking on time-consuming kinetic and thermodynamic studies required for a detailed understanding of beta-sheet folding.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
J Biomol NMR. 2011 Sep;51(1-2):21-34
Authors: Greenwood AI, Rogals MJ, De S, Lu KP, Kovrigin EL, Nicholson LK
Abstract
The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation,...
nmrlearner
Journal club
0
09-30-2011 06:00 AM
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
Complete determination of the Pin1 catalytic domain thermodynamic cycle by NMR lineshape analysis.
J Biomol NMR. 2011 Sep;51(1-2):21-34
Authors: Greenwood AI, Rogals MJ, De S, Lu KP, Kovrigin EL, Nicholson LK
Abstract
The phosphorylation-specific peptidyl-prolyl isomerase Pin1 catalyzes the isomerization of the peptide bond preceding a proline residue between cis and trans isomers. To best understand the mechanisms of Pin1 regulation,...
nmrlearner
Journal club
0
09-30-2011 05:59 AM
[NMR paper] Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on B
Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations.
Related Articles Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations.
J Biomol NMR. 2004 May;29(1):21-35
Authors: Bernadó P, Fernandes MX, Jacobs DM, Fiebig K, García de la Torre J, Pons M
Many important proteins contain multiple domains connected by flexible linkers. Inter-domain motion is suggested to play a key role in many processes involving molecular recognition....
nmrlearner
Journal club
0
11-24-2010 09:51 PM
[NMR paper] 1H NMR study on the binding of Pin1 Trp-Trp domain with phosphothreonine peptides.
1H NMR study on the binding of Pin1 Trp-Trp domain with phosphothreonine peptides.
Related Articles 1H NMR study on the binding of Pin1 Trp-Trp domain with phosphothreonine peptides.
J Biol Chem. 2001 Jul 6;276(27):25150-6
Authors: Wintjens R, Wieruszeski JM, Drobecq H, Rousselot-Pailley P, Buée L, Lippens G, Landrieu I
The recent crystal structure of Pin1 protein bound to a doubly phosphorylated peptide from the C-terminal domain of RNA polymerase II revealed that binding interactions between Pin1 and its substrate take place through its...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
[NMR paper] NMR structure of a stable "OB-fold" sub-domain isolated from staphylococcal nuclease.
NMR structure of a stable "OB-fold" sub-domain isolated from staphylococcal nuclease.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR structure of a stable "OB-fold" sub-domain isolated from staphylococcal nuclease.
J Mol Biol. 1995 Jul 7;250(2):134-43
Authors: Alexandrescu AT, Gittis AG, Abeygunawardana C, Shortle D
Similar folds often occur in proteins with dissimilar sequences. The OB-fold forms a part of the structures of at least seven non-homologous proteins...