BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-19-2016, 08:35 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR solution structure determination of large RNA-protein complexes

NMR solution structure determination of large RNA-protein complexes

Publication date: November 2016
Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 97

Author(s): Deepak Kumar Yadav, Peter J. Lukavsky

Structure determination of RNA-protein complexes is essential for our understanding of the multiple layers of RNA-mediated posttranscriptional regulation of gene expression. Over the past 20years, NMR spectroscopy became a key tool for structural studies of RNA-protein interactions. Here, we review the progress being made in NMR structure determination of large ribonucleoprotein assemblies. We discuss approaches for the design of RNA-protein complexes for NMR structural studies, established and emerging isotope and segmental labeling schemes suitable for large RNPs and how to gain distance restraints from NOEs, PREs and EPR and orientational information from RDCs and SAXS/SANS in such systems. The new combination of NMR measurements with MD simulations and its potential will also be discussed. Application and combination of these various methods for structure determination of large RNPs will be illustrated with three large RNA-protein complexes (>40kDa) and other interesting complexes determined in the past six and a half years.
Graphical abstract








More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Solution NMR Experiment for Measurement of 15N-1H Residual Dipolar Couplings in Large Proteins and Supramolecular Complexes.
Solution NMR Experiment for Measurement of 15N-1H Residual Dipolar Couplings in Large Proteins and Supramolecular Complexes. Related Articles Solution NMR Experiment for Measurement of 15N-1H Residual Dipolar Couplings in Large Proteins and Supramolecular Complexes. J Am Chem Soc. 2015 Aug 21; Authors: Eletsky A, Pulavarti SV, Beaumont V, Gollnick P, Szyperski T Abstract NMR residual dipolar couplings (RDCs) are exquisite probes of protein structure and dynamics. A new solution NMR experiment named 2D SE2 J-TROSY is presented to...
nmrlearner Journal club 0 08-22-2015 11:20 AM
[NMR paper] Combining NMR and EPR to Determine Structures of Large RNAs and Protein-RNA Complexes in Solution.
Combining NMR and EPR to Determine Structures of Large RNAs and Protein-RNA Complexes in Solution. Related Articles Combining NMR and EPR to Determine Structures of Large RNAs and Protein-RNA Complexes in Solution. Methods Enzymol. 2015;558:279-331 Authors: Duss O, Yulikov M, Allain FH, Jeschke G Abstract Although functional significance of large noncoding RNAs and their complexes with proteins is well recognized, structural information for this class of systems is very scarce. Their inherent flexibility causes problems in...
nmrlearner Journal club 0 06-13-2015 11:09 PM
Fast methionine-based solution structure determination of calcium-calmodulin complexes
Fast methionine-based solution structure determination of calcium-calmodulin complexes Abstract Here we present a novel NMR method for the structure determination of calcium-calmodulin (Ca2+-CaM)-peptide complexes from a limited set of experimental restraints. A comparison of solved CaM-peptide structures reveals invariability in CaMâ??s backbone conformation and a structural plasticity in CaMâ??s domain orientation enabled by a flexible linker. Knowing this, the collection and analysis of an extensive set of NOESY spectra is redundant. Although RDCs can define CaM domain orientation in...
nmrlearner Journal club 0 03-03-2011 02:06 AM
[NMR paper] Structure determination of protein/RNA complexes by NMR.
Structure determination of protein/RNA complexes by NMR. Related Articles Structure determination of protein/RNA complexes by NMR. Methods Enzymol. 2005;394:525-45 Authors: Wu H, Finger LD, Feigon J Structure determination of protein?RNA complexes in solution provides unique insights into factors that are involved in protein/RNA recognition. Here, we review the methodology used in our laboratory to overcome the challenges of protein?RNA structure determination by nuclear magnetic resonance (NMR). We use as two examples complexes recently...
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Structure determination of protein complexes by NMR.
Structure determination of protein complexes by NMR. Related Articles Structure determination of protein complexes by NMR. Methods Mol Biol. 2004;278:255-88 Authors: Nietlispach D, Mott HR, Stott KM, Nielsen PR, Thiru A, Laue ED This chapter describes nuclear magnetic resonance (NMR) methods that can be used to determine the structures of protein complexes. Many of these techniques are also applicable to other systems (e.g., protein-nucleic acid complexes). In the first section, we discuss methodologies for optimizing the sample conditions for...
nmrlearner Journal club 0 11-24-2010 09:25 PM
[NMR paper] NMR structure determination of proteins and protein complexes larger than 20 kDa.
NMR structure determination of proteins and protein complexes larger than 20 kDa. Related Articles NMR structure determination of proteins and protein complexes larger than 20 kDa. Curr Opin Chem Biol. 1998 Oct;2(5):564-70 Authors: Clore GM, Gronenborn AM Recent advances in multidimensional nuclear magnetic resonance methodology to obtain 1H, 15N and 13C resonance assignments, interproton distance and torsion angle restraints, and restraints that characterize long-range order, coupled with new methods of structure refinement and novel methods...
nmrlearner Journal club 0 11-17-2010 11:15 PM
PCS-based structure determination of proteinâ??protein complexes
Abstract A simple and fast nuclear magnetic resonance method for docking proteins using pseudo-contact shift (PCS) and 1HN/15N chemical shift perturbation is presented. PCS is induced by a paramagnetic lanthanide ion that is attached to a target protein using a lanthanide binding peptide tag anchored at two points. PCS provides long-range (~40 Ã?) distance and angular restraints between the lanthanide ion and the observed nuclei, while the 1HN/15N chemical shift perturbation data provide loose contact-surface information. The usefulness of this method was demonstrated through the structure...
nmrlearner Journal club 0 08-14-2010 04:19 AM
Structure Determination of Protein Complexes by NMR
Structure Determination of Protein Complexes by NMR D. Nietlispach, H.R. Mott, K.M. Stott, P.R. Nielsen, A. Thiru & E.D. Laue The Department of Biochemistry, University of Cambridge Introduction As the structures of more proteins and domains are solved by structural genomics projects, the future of structural biology will be oriented more toward the study of macromolecular complexes. Since so many biological processes are mediated by interactions between proteins, it is important to study them at a molecular level. The study of protein-protein interactions also has applications in a...
timbo Educational web pages 0 08-29-2008 02:43 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:19 AM.


Map