Related ArticlesNMR solution structure of calcium-saturated skeletal muscle troponin C.
Biochemistry. 1995 Dec 12;34(49):15953-64
Authors: Slupsky CM, Sykes BD
Troponin C (TnC) is an 18 kDa (162-residue) thin-filament calcium-binding protein responsible for triggering muscle contraction upon the release of calcium from the sarcoplasmic reticulum. The structure of TnC with two calcium ions bound has previously been solved by X-ray methods. Shown here is the solution structure of TnC which has been solved using 3D and 4D heteronuclear nuclear magnetic resonance (NMR) spectroscopic techniques. The 1H, 13C, and 15N backbone chemical shifts have already been published [Slupsky, C. M., Reinach, F. C., Smillie, L. B., & Sykes, B. D. (1995) Protein Sci. 4, 1279-1290]. Presented herein are the 1H, 13C, and 15N side-chain chemical shifts which are 80% complete. The structure of calcium-saturated TnC was determined on the basis of 2106 NOE-derived distance restraints, 121 phi dihedral angle restraints, and 76 psi dihedral angle restraints. The appearance of calcium-saturated TnC reveals a dumbbell-shaped molecule with two globular domains connected by a linker. The structures of the N-terminal and C-terminal domains are highly converged [backbone atomic root mean square deviations (rmsd) about the mean atomic coordinate position for residues 10-80 and 98-155 are 0.66 +/- 0.17 and 0.69 +/- 0.18 A, respectively]; however, the orientation of one domain with respect to the other is not well-defined, and thus each domain appears to be structurally independent. Comparison of the calcium-saturated form of TnC determined herein with the half-saturated form determined by X-ray methods reveals two major differences. First, there is a major structural change which occurs in the N-terminal domain resulting in the opening of a hydrophobic pocket presumably to present itself to its target protein troponin I. This structural change appears to involve only helices B and C which move away from helices N/A/D by the alteration of the backbone phi, psi angles of glutamic acid 41 from irregular in the crystal structure (-97 degrees, -7 degrees) to helical in the NMR calcium-saturated structure (-60 degrees, -34 degrees). The other difference between the two structures is the presence of a flexible linker between the two domains in the NMR structure. This flexible linker allows the two domains of TnC to adopt any orientation with respect to one another such that they can interact with a variety of targets.
Skeletal muscle lipid metabolism studied by advanced magnetic resonance spectroscopy
Skeletal muscle lipid metabolism studied by advanced magnetic resonance spectroscopy
Publication year: 2012
Source: Progress in Nuclear Magnetic Resonance Spectroscopy, Available online 23 February 2012</br>
Arunima*Pola, Suresh Anand*Sadananthan, Jadegoud*Yaligar, Vijayasarathi*Nagarajan, Weiping*Han, ...</br>
More...
nmrlearner
Journal club
0
02-26-2012 05:01 AM
Effect of ischemic preconditioning in skeletal muscle measured by functional ... - 7thSpace Interactive (press release)
<img alt="" height="1" width="1" />
Effect of ischemic preconditioning in skeletal muscle measured by functional ...
7thSpace Interactive (press release)
Nuclear magnetic resonance (NMR) imaging and spectroscopy have been applied to assess skeletal muscle oxidative metabolism. Therefore, in-vivo NMR may enable the characterization of ischemia-reperfusion injury. The goal of this study was to evaluate ...
Protein NMR Spectroscopy: Practical Techniques and ApplicationsspectroscopyNOW.com
all 2 news articles »
Effect of ischemic preconditioning in skeletal muscle measured by...
nmrlearner
Online News
0
07-26-2011 11:22 PM
[NMR paper] Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis.
Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis.
Related Articles Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis.
FASEB J. 2005 Sep;19(11):1431-40
Authors: Astrakas LG, Goljer I, Yasuhara S, Padfield KE, Zhang Q, Gopalan S, Mindrinos MN, Dai G, Yu YM, Martyn JA, Tompkins RG, Rahme LG, Tzika AA
Burn trauma triggers hypermetabolism and muscle wasting via increased cellular protein degradation and apoptosis. Proton...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
[NMR paper] Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alp
Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein.
Related Articles Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein.
J Mol Biol. 2001 Sep 28;312(4):833-47
Authors: Greenfield NJ, Huang YJ, Palm T, Swapna GV, Monleon D, Montelione GT, Hitchcock-DeGregori SE
Tropomyosin is an alpha-helical coiled-coil protein that aligns head-to-tail along the length of the actin filament and...
nmrlearner
Journal club
0
11-19-2010 08:44 PM
[NMR paper] 13C/31P NMR assessment of mitochondrial energy coupling in skeletal muscle of awake f
13C/31P NMR assessment of mitochondrial energy coupling in skeletal muscle of awake fed and fasted rats. Relationship with uncoupling protein 3 expression.
Related Articles 13C/31P NMR assessment of mitochondrial energy coupling in skeletal muscle of awake fed and fasted rats. Relationship with uncoupling protein 3 expression.
J Biol Chem. 2000 Dec 15;275(50):39279-86
Authors: Jucker BM, Ren J, Dufour S, Cao X, Previs SF, Cadman KS, Shulman GI
To examine the relationship between mitochondrial energy coupling in skeletal muscle and change in...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] NMR solution structure of a synthetic troponin C heterodimeric domain.
NMR solution structure of a synthetic troponin C heterodimeric domain.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles NMR solution structure of a synthetic troponin C heterodimeric domain.
Biochemistry. 1996 Jun 11;35(23):7429-38
Authors: Shaw GS, Sykes BD
The C-terminal domain from the muscle protein troponin C (TnC) comprises two helix-loop-helix calcium-binding sites (residues 90-162). The assembly of these two sites is governed by calcium binding enabling a synthetic C-terminal...
nmrlearner
Journal club
0
08-22-2010 02:27 PM
[NMR paper] Solution secondary structure of calcium-saturated troponin C monomer determined by mu
Solution secondary structure of calcium-saturated troponin C monomer determined by multidimensional heteronuclear NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Solution secondary structure of calcium-saturated troponin C monomer determined by multidimensional heteronuclear NMR spectroscopy.
Protein Sci. 1995...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] NMR-derived three-dimensional solution structure of protein S complexed with calcium.
NMR-derived three-dimensional solution structure of protein S complexed with calcium.
Related Articles NMR-derived three-dimensional solution structure of protein S complexed with calcium.
Structure. 1994 Feb 15;2(2):107-22
Authors: Bagby S, Harvey TS, Eagle SG, Inouye S, Ikura M
BACKGROUND: Protein S is a developmentally-regulated Ca(2+)-binding protein of the soil bacterium Myxococcus xanthus. It functions by forming protective, multilayer spore surface assemblies which may additionally act as a cell-cell adhesive. Protein S is...