The solution structure of the C-terminal fragment 255-316 of thermolysin has been determined by two-dimensional proton NMR methods. For this disulfide-free fragment there was a previous proposal according to which it would fold into a stable helical structure forming a dimer at concentrations above 0.06 mM. A complete assignment of the proton NMR resonances of the backbone and amino acid side chains of the fragment was first performed using standard sequential assignment methods. On the basis of 729 distance constraints derived from unambiguously assigned nuclear Overhauser effect (NOE) proton connectivities, the three-dimensional structure of a monomeric unit was then determined by using distance geometry and restrained molecular dynamic methods. The globular structure of fragment 255-316 of thermolysin in solution, composed of three helices, is largely coincident with that of the corresponding region in the crystallographic structure of intact thermolysin [Holmes, M. A., & Matthews, B. W. (1982) J. Mol. Biol. 160, 623-639]. This fact allowed identification as intersubunit of up to 52 NOE cross correlations, which were used to dock the two subunits into a symmetric dimer structure. The obtained dimeric structure served as the starting structure in a final restrained molecular dynamic calculation subjected to a total of 1562 distance constraints. In the resulting dimeric structure, the interface between the two subunits, of a marked hydrophobic character, coincides topologically with the one between the 255-316 fragment and the rest of the protein in the intact enzyme. The present work decisively shows that the thermolysin fragment 255-316 can attain a stable and nativelike structure independently of the rest of the polypeptide chain. Considering that the thermolysin molecule is constituted of two structural domains of equal size (residues 1-157 and 158-316), the results of this study show that autonomously folding units can be substantially smaller than entire domains.
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
NMR solution structure of subunit E (fragment E(1-69)) of the Saccharomyces cerevisiae V (1)V (O) ATPase.
J Bioenerg Biomembr. 2011 Mar 12;
Authors: Rishikesan S, Thaker YR, Grüber G
The N-terminus of V-ATPase subunit E has been shown to associate with the subunits C, G and H, respectively. To understand the assembly of E with its neighboring subunits as well as its N-terminal structure, the N-terminal region, E(1-69), of the...
nmrlearner
Journal club
0
03-15-2011 04:06 PM
[NMR paper] NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of
NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein.
Related Articles NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein.
Biochemistry. 2004 Nov 30;43(47):14940-7
Authors: Biverståhl H, Andersson A, Gräslund A, Mäler L
The structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein (bPrPp) has been investigated by NMR spectroscopy in phospholipid membrane mimetic systems. CD spectroscopy...
nmrlearner
Journal club
0
11-24-2010 10:03 PM
[NMR paper] High-resolution solution structure of the inhibitor-free catalytic fragment of human
High-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase determined by multidimensional NMR.
Related Articles High-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase determined by multidimensional NMR.
Biochemistry. 1998 Feb 10;37(6):1495-504
Authors: Moy FJ, Chanda PK, Cosmi S, Pisano MR, Urbano C, Wilhelm J, Powers R
The high-resolution solution structure of the inhibitor-free catalytic fragment of human fibroblast collagenase (MMP-1), a...
[NMR paper] Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia col
Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR.
Biochemistry. 1997 Mar 4;36(9):2517-30
Authors: Garrett DS, Seok YJ, Liao DI, Peterkofsky A, Gronenborn AM, Clore GM
...
[NMR paper] Dimer initiation sequence of HIV-1Lai genomic RNA: NMR solution structure of the exte
Dimer initiation sequence of HIV-1Lai genomic RNA: NMR solution structure of the extended duplex.
Related Articles Dimer initiation sequence of HIV-1Lai genomic RNA: NMR solution structure of the extended duplex.
J Biomol Struct Dyn. 1999 Jun;16(6):1145-57
Authors: Girard F, Barbault F, Gouyette C, Huynh-Dinh T, Paoletti J, Lancelot G
The genome of all retrovirus consists of two copies of genomic RNA which are noncovalently linked near their 5' end. A sequence localized immediately upstream from the splice donor site inside the HIV-1 psi-RNA...