BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 11-24-2010, 11:14 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar.

NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar.

Related Articles NMR snapshots of a fluctuating protein structure: ubiquitin at 30 bar-3 kbar.

J Mol Biol. 2005 Mar 25;347(2):277-85

Authors: Kitahara R, Yokoyama S, Akasaka K

Conformational fluctuation plays a key role in protein function, but we know little about the associated structural changes. Here we present a general method for elucidating, at the atomic level, a large-scale shape change of a protein molecule in solution undergoing conformational fluctuation. The method utilizes the intimate relationship between conformation and partial molar volume and determines three-dimensional structures of a protein at different pressures using variable pressure NMR technique, whereby NOE distance and torsion angle constraints are used to create average coordinates. Ubiquitin (pH 4.6 at 20 degrees C) was chosen as the first target, for which structures were determined at 30 bar and at 3 kbar, giving "NMR snapshots" of a fluctuating protein structure at atomic resolution. The result reveals that the helix swings in and out by >3 angstroms with a simultaneous reorientation of the C-terminal segment, providing an "open" conformer suitable for enzyme recognition. Spin relaxation analysis indicates that this fluctuation occurs in the ten microsecond time range with activation volumes -4.2(+/-3.2) and 18.5(+/-3.0) ml/mol for the "closed-to-open" and the "open-to-closed" transitions, respectively.

PMID: 15740740 [PubMed - indexed for MEDLINE]



Source: PubMed
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation.
Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation. Related Articles Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation. Anal Chem. 2003 Feb 15;75(4):956-60 Authors: Kakuta M, Jayawickrama DA, Wolters AM, Manz A, Sweedler JV Time-resolved NMR spectroscopy is used to studychanges in protein conformation based on the elapsed time after a change in the solvent composition of a protein solution. The use of a micromixer and a continuous-flow method is described where the contents of...
nmrlearner Journal club 0 11-24-2010 09:01 PM
[NMR paper] NMR structure of conserved eukaryotic protein ZK652.3 from C. elegans: a ubiquitin-li
NMR structure of conserved eukaryotic protein ZK652.3 from C. elegans: a ubiquitin-like fold. Related Articles NMR structure of conserved eukaryotic protein ZK652.3 from C. elegans: a ubiquitin-like fold. Proteins. 2002 Sep 1;48(4):733-6 Authors: Cort JR, Chiang Y, Zheng D, Montelione GT, Kennedy MA
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shif
Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation. Related Articles Ubiquitin binding interface mapping on yeast ubiquitin hydrolase by NMR chemical shift perturbation. Biochemistry. 1999 Jul 20;38(29):9242-53 Authors: Rajesh S, Sakamoto T, Iwamoto-Sugai M, Shibata T, Kohno T, Ito Y The interaction between the 26 kDa yeast ubiquitin hydrolase (YUH1), involved in maintaining the monomeric ubiquitin pool in cells, and the 8.5 kDa yeast ubiquitin protein has been studied by heteronuclear...
nmrlearner Journal club 0 11-18-2010 08:31 PM
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by S
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy. Related Articles Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy. J Am Chem Soc. 2010 Oct 26; Authors: Schanda P, Meier BH, Ernst M Characterization of protein dynamics by solid-state NMR spectroscopy requires robust and accurate measurement protocols, which are not yet fully developed. In this study, we investigate the backbone dynamics of microcrystalline ubiquitin...
nmrlearner Journal club 0 10-29-2010 07:05 PM
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by S
Quantitative Analysis of Protein Backbone Dynamics in Microcrystalline Ubiquitin by Solid-State NMR Spectroscopy Paul Schanda, Beat H. Meier and Matthias Ernst http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja100726a/aop/images/medium/ja-2010-00726a_0001.gif Journal of the American Chemical Society DOI: 10.1021/ja100726a http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/vMvBmzNs148
nmrlearner Journal club 0 10-26-2010 08:48 PM
[NMR paper] Localized solution structure refinement of an F45W variant of ubiquitin using stochas
Localized solution structure refinement of an F45W variant of ubiquitin using stochastic boundary molecular dynamics and NMR distance restraints. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Localized solution structure refinement of an F45W variant of ubiquitin using stochastic boundary molecular dynamics and NMR distance restraints. ...
nmrlearner Journal club 0 08-22-2010 03:41 AM
[NMR paper] 3 Nsec molecular dynamics simulation of the protein ubiquitin and comparison with X-r
3 Nsec molecular dynamics simulation of the protein ubiquitin and comparison with X-ray crystal and solution NMR structures. Related Articles 3 Nsec molecular dynamics simulation of the protein ubiquitin and comparison with X-ray crystal and solution NMR structures. J Biomol Struct Dyn. 1992 Apr;9(5):935-49 Authors: Braatz JA, Paulsen MD, Ornstein RL Mainly due to computational limitations, past protein molecular dynamics simulations have rarely been extended to 300 psec; we are not aware of any published results beyond 350 psec. The present...
nmrlearner Journal club 0 08-21-2010 11:41 PM
Ubiquitin structure by solid-state NMR
Protein Structure Determination by High-Resolution Solid-State NMR Spectroscopy: Application to Microcrystalline Ubiquitin Stephan G. Zech,* A. Joshua Wand, and Ann E. McDermott* http://pubs.acs.org/isubscribe/journals/jacsat/127/i24/figures/ja0503128n00001.gif Contribution from the Department of Chemistry, Columbia University, 3000 Broadway Mail Code 3113, New York, New York 10027, and Department of Biochemistry and Biophysics, University of Pennsylvania, The Johnson Research Foundation, Philadelphia, Pennsylvania 19104 J. Am. Chem. Soc., 127 (24), 8618 -8626, 2005.
nmrlearner Journal club 0 06-15-2005 07:00 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:58 AM.


Map